ТИПИЗАЦИЯ ЛАНДШАФТОВ
ДЛЯ ОЦЕНКИ РЕЧНОГО СТОКА
В АЛТАЕ-САЯНСКОЙ ГОРНОЙ СТРАНЕ

Постановка задачи

Рассматриваемая в настоящей работе территория Алтая-Саянской горной страны расположена между 50 и 56° с.ш. и 83 и 100° в.д. и представляет собой часть мирового водораздела между гумидной областью Северного Ледовитого океана и аридной бесснежной областью Центральной Азии. Она включает в себя горные системы Алтай и Саян, Салаирский кряж, Кузнецкий Алатау, горы Туя. Преобладающие высоты хребтов горных систем составляют 2000-2500 м, достигая на Алтае 3500-4500 м.

Свое начало в Алтас-Саянской горной стране берут такие крупные сибирские реки, как Обь и Енисей, имеющие здесь множество притоков. Водность последних значительно различается в пределах страны в связи с разнообразием условий формирования стоков. У всех рек страны наибольшие стоки наблюдаются в теплый период года. Режим стоков зависит весной от таяния снегов, а в летне-осенний период – от количества выпадающих осадков. При наличии в речных бассейнах ледников сток зависит ещё и от интенсивности их таяния.

Согласно прогнозам к 2020-2025 годам практически все доступные водные ресурсы в мире будут использоваться человеком [1]. Растущие потребности сельского хозяйства в орошении, питьевое водоснабжение населения, развитие горнодобывающей промышленности в Рудном Алтае, нуждающейся в энергетическом потенциале горных рек, играющее рекреационное освоение Горного Алтая обусловливают все возрастающее значение водных ресурсов Алтас-Саянской горной страны. Важнейшей составляющей этих ресурсов являются поверхностные пресные воды и их качество, в том числе гидрологический и гидрохимический стоки рек.

Разнообразие природно-климатических условий Алтас-Саянской горной страны обусловливает различие не только ландшафтов в бассейнах рек, но и гидрологического и гидрохимического стоков. К формирующим ландшафтную структуру бассейнов природным условиям можно отнести геологическое строение, орографическую и климатическую неоднородность территории, высотную поясность почв и растительности. Очевидно, аналогичные факторы определяют и водные ресурсы территории. При этом оценка влияния каждого из факторов на формирование как ландшафтов, так и водных ресурсов затруднительна, поскольку их воздействие всегда комплексно.

В связи с изложенным для комплексного анализа формирования гидрологического и гидрохимического стоков нами использовался ландшафтный подход. Последний позволяет разделить все факторы на пространственно различные группы, отвечающие той или иной группе ландшафтов (геоси-
стем). Тем самым совокупное влияние природных условий на стоки можно будет учитывать опосредованно через ландшафтную структуру бассейнов рек. Подобным разделением условий среды, но уже по вертикали, является, например, выделение быстрого дождевого, поверхностного и подземного стоков [2]. Ландшафтный подход позволит избежать подробного анализа множества отдельных значимых природных факторов и сделает возможным в принципе комплексный анализ формирования стоков. Целесообразность данного подхода также обусловлена отсутствием достаточного количества экспериментальных данных (в данном случае — по Алтее-Саянской горной стране), необходимых для подобного анализа воздействующих на стоки факторов.

В нашей стране много десятилетий назад обоснованы и успешно развиваются идеи по исследованию формирования стока на ландшафтной основе. Эти идеи отражены в работах В.Г. Глушкова [3], М.А. Великанова [4], Д.Л. Соколовского [5], А.И. Субботина и др. [6, 7], А.Н. Антипова и Л.М. Корстеного [8], А.Н. Антипова и В.Н. Федорова [9], Ю.Б. Виноградова [10] и др. В качестве связующего звена между гидрологическими и ландшафтными исследованиями рассматривается гидрология ландшафтов.

Согласно Ю.Б. Виноградову [10], гидрология ландшафтов занимается изучением закономерностей географического распределения характеристик, определяющих гидрологический режим территории, или, иными словами, параметров моделей формирования стока. В качестве частных задач гидрологии ландшафтов следует указать выделение, типизацию и картографирование стокоформирующих комплексов для различных природных зон, то есть увязку качественных рассуждений с численными показателями. Все это изначально предполагал и основоположник комплексной гидрологии и географо-гидрологического метода исследований В.Г. Глушков.

Таким образом, нашей задачей является анализ и обобщение ландшафтов в бассейнах горных рек различного порядка для отражения отдельных территориальных совокупностей природных факторов, влияющих на сток этих рек. Задача включает: а — выбор уровня типизации ландшафтов, который с одной стороны определяется размерами модельных бассейнов, а с другой — должен быть применим для оценок гидрологического и гидрохимического стоков рек; б — выделение и характеристика типизированных групп ландшафтов; в — анализ вариаций характеристик этих групп в пределах бассейнов. Число последних должно быть достаточным для получения статистически достоверных результатов. Для оценки роли отдельных групп ландшафтов в формировании водных ресурсов должны использоваться, наравне с другими факторами, относительные вклады этих групп в общую площадь бассейнов.

ИСХОДНЫЕ МАТЕРИАЛЫ И МЕТОДЫ ОБРАБОТКИ

В настоящем исследовании ландшафтные особенности речных бассейнов Алтее-Саянской горной страны определялись на основе карты «Ландшафты Алтая (Алтайский край и Республика Алтай)», подготовленной Д.В. Черных и Г.С. Самойловой [12], и фоновых материалов лаборатории ландшафтно-экозоэкологических исследований и природопользования ИВЭП СО РАН (масштаб 1:500000). Эти материалы позволили создать все необходимые ГИС-версии карт. Поскольку ландшафтные контуры были выделены на картографической основе масштаба 1:500000, то идентификация границ модельных бассейнов, как и расчет средних высот бассейнов и групп геосистем внутри них, осуществлялись на томографической основе масштаба 1:200000. На рис. 1 приведена схема применения ГИС-инструментария для расчета статистических характеристик ландшафтных структуры речных бассейнов. Для обработки информации использовались ряд статистических методов и вычислительных технологий, в том числе средства ГИС ArcGIS 9.1.

Рис. 1. Схема обработки данных при анализе ландшафтной структуры речных бассейнов средствами ГИС.
Для таких крупных и разнородных в ландшафтном отношении регионов, как Алтая-Саянская горная страна статистическая надежность оценок достигается при достаточно большом объеме выборок (более числа модельных речных бассейнов). Исходя из этого, было выбрано 33 речных бассейна (табл. 1). При этом допускалось, что часть бассейнов может выходить за границы собственно горной страны. Дополнительными критериями отбора бассейнов было отсутствие в их пределах значительной антропогенной нагрузки на территорию и проведение систематических наблюдений гидрологического и гидрохимического стоков на их замыкающих створах.

Таблица 1

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Речной бассейн и его замыкающий створ</th>
<th>Высота замыкающего створа, м.н.у.м.</th>
<th>Средняя высота бассейна, м.н.у.м.</th>
<th>Группы ландшафтов</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>п. Алчедат, с. Троицкое</td>
<td>199</td>
<td>261</td>
<td>6, 8, 11</td>
</tr>
<tr>
<td>2</td>
<td>п. Амгас, п. Амгас</td>
<td>399</td>
<td>526</td>
<td>4, 6</td>
</tr>
<tr>
<td>3</td>
<td>п. Ануй, сх. Ануйский</td>
<td>195</td>
<td>779</td>
<td>2, 4, 5, 6, 8, 10, 11</td>
</tr>
<tr>
<td>4</td>
<td>п. Барзас, птг. Барзас</td>
<td>191</td>
<td>264</td>
<td>4, 6, 7, 10, 12</td>
</tr>
<tr>
<td>5</td>
<td>п. Бачат, птг. Бачаты</td>
<td>230</td>
<td>361</td>
<td>6, 8, 10</td>
</tr>
<tr>
<td>6</td>
<td>п. Бердя, г. Искутим</td>
<td>122</td>
<td>292</td>
<td>4, 6, 8, 10, 11</td>
</tr>
<tr>
<td>7</td>
<td>п. Бердя, птг. Маслининно</td>
<td>188</td>
<td>335</td>
<td>4, 8, 10, 11</td>
</tr>
<tr>
<td>8</td>
<td>п. Большая Тереха, с. Тереха</td>
<td>1126</td>
<td>1904</td>
<td>2, 4, 5, 7, 9, 10</td>
</tr>
<tr>
<td>9</td>
<td>п. Верхняя Терьса, с. Осиновое Плесо</td>
<td>188</td>
<td>572</td>
<td>2, 4, 6, 10, 11</td>
</tr>
<tr>
<td>10</td>
<td>п. Иня, с. Кусмень</td>
<td>188</td>
<td>256</td>
<td>6, 7, 8, 10</td>
</tr>
<tr>
<td>11</td>
<td>п. Каменка, с. Советское</td>
<td>200</td>
<td>483</td>
<td>4, 6, 8, 10, 11</td>
</tr>
<tr>
<td>12</td>
<td>п. Касья, с. Красное</td>
<td>210</td>
<td>335</td>
<td>6, 7</td>
</tr>
<tr>
<td>13</td>
<td>п. Катунь, с. Тюнгур</td>
<td>857</td>
<td>1681</td>
<td>1, 2, 4, 5, 7, 9, 10</td>
</tr>
<tr>
<td>14</td>
<td>п. Кия, птг. Макарский</td>
<td>250</td>
<td>656</td>
<td>2, 4, 6, 10</td>
</tr>
<tr>
<td>15</td>
<td>п. Кондома, г. Осинники</td>
<td>214</td>
<td>500</td>
<td>2, 4, 6, 10, 11, 12</td>
</tr>
<tr>
<td>16</td>
<td>п. Кондома, п. Таштагол</td>
<td>456</td>
<td>668</td>
<td>4, 10</td>
</tr>
<tr>
<td>17</td>
<td>п. Мрас-Су. г. Мысыки</td>
<td>239</td>
<td>675</td>
<td>2, 4, 6, 10, 11, 12</td>
</tr>
<tr>
<td>18</td>
<td>п. Мундарбаш, птг. Мундарбаш</td>
<td>333</td>
<td>518</td>
<td>2, 4, 6, 10</td>
</tr>
<tr>
<td>19</td>
<td>п. Песчаная, с. Точильное</td>
<td>198</td>
<td>899</td>
<td>2, 4, 5, 6, 8, 9, 10, 11</td>
</tr>
<tr>
<td>20</td>
<td>п. Сема, с. Шеблино</td>
<td>876</td>
<td>1381</td>
<td>2, 4, 5, 10</td>
</tr>
<tr>
<td>21</td>
<td>п. Серта, с. Усть-Колба</td>
<td>187</td>
<td>273</td>
<td>4, 8, 11, 12</td>
</tr>
<tr>
<td>22</td>
<td>п. Средняя Терьса, п. Мутное</td>
<td>239</td>
<td>682</td>
<td>2, 4, 6, 10</td>
</tr>
<tr>
<td>23</td>
<td>п. Тайдон, п. Медведка</td>
<td>181</td>
<td>505</td>
<td>2, 4, 6, 10, 11, 12</td>
</tr>
<tr>
<td>24</td>
<td>п. Тогул, с. Тогул</td>
<td>194</td>
<td>342</td>
<td>4, 8, 11</td>
</tr>
<tr>
<td>25</td>
<td>п. Том, п. Теба</td>
<td>336</td>
<td>865</td>
<td>2, 4, 10</td>
</tr>
<tr>
<td>26</td>
<td>п. Тутуяс, п. Тутуяс</td>
<td>248</td>
<td>399</td>
<td>2, 4, 10</td>
</tr>
<tr>
<td>27</td>
<td>п. Урюп, с. Иландаево</td>
<td>244</td>
<td>543</td>
<td>2, 4, 6, 9, 10</td>
</tr>
<tr>
<td>28</td>
<td>п. Уса, с. Межуречник</td>
<td>264</td>
<td>802</td>
<td>2, 4, 6, 10</td>
</tr>
<tr>
<td>29</td>
<td>п. Ускат, с. Красулинно</td>
<td>194</td>
<td>300</td>
<td>6, 8, 10</td>
</tr>
<tr>
<td>30</td>
<td>п. Чарыш, сх. Чарышский</td>
<td>149</td>
<td>747</td>
<td>2, 4, 5, 6, 7, 8, 9, 10, 11, озера</td>
</tr>
<tr>
<td>31</td>
<td>п. Чульшам, с. Бальчча</td>
<td>460</td>
<td>1968</td>
<td>1, 2, 3, 4, 5, 7, 9, 10, озера</td>
</tr>
<tr>
<td>32</td>
<td>п. Шипуниха, с. Уругун</td>
<td>147</td>
<td>250</td>
<td>4, 8, 11</td>
</tr>
<tr>
<td>33</td>
<td>п. Яя, птг. Яя</td>
<td>145</td>
<td>247</td>
<td>4, 6, 7, 8, 10, 11, 12</td>
</tr>
</tbody>
</table>
Результаты и обсуждение
Исходя из постановки задачи, уровень типизации ландшафтов должен удовлетворять определенным критериям. Применительно к крупным и разнородным в ландшафтом отношении регионам – таким, как Алтэс-Саянская горная страна, эти критерии должны отражать наиболее общие особенности и условия формирования стока в каждой группе ландшафтов. Таковыми, на наш взгляд, являются:
- общие для группы особенности климата (режим поступления осадков и термический режим);
- орогрфические и литологические особенности, влияющие на сток;
- характер и интенсивность биохимического круговорота веществ.
По указанным критериям все многообразие ландшафтов модельных бассейнов было объединено в 12 групп ландшафтов (табл. 2). В качестве самостоятельной была выделена группа аквальных ландшафтов, включающая акватории крупных озер.

Таблица 2
Средняя высота и относительная площадь групп ландшафтов (геосистем) в речных бассейнах Алтэс-Саянской горной страны

<table>
<thead>
<tr>
<th>Группа ландшафтов</th>
<th>Средняя высота, м п.у.</th>
<th>Стандартное отклонение 1 для высот, м п.у.</th>
<th>Средняя относительная площадь, % 2</th>
<th>Стандартное отклонение 1 для площадей, % 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Гляциально-нивальные высокогорья с ледниками, многолетними снежниками,</td>
<td>2448</td>
<td>-</td>
<td>1,2</td>
<td>-</td>
</tr>
<tr>
<td>фрагментарным растительным покровом из лишайниковых тундра</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Гольцово-альпийские высокогорья и среднетундры, псевдогольцовые низкогорья</td>
<td>1446</td>
<td>436</td>
<td>9,5</td>
<td>1,16</td>
</tr>
<tr>
<td>с сочетанием альпийских и субальпийских лугов и различных вариантов тундра</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(моховых, травянистых, кустарничковых, кустарниковых)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Тундрово-степные и криофитно-степные высокогорья в условиях экстратеррриториального</td>
<td>2329</td>
<td>-</td>
<td>0,4</td>
<td>-</td>
</tr>
<tr>
<td>климата</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Лесные высокогорья, среднетундры и низкогорья (горно-травяные, черноземно-травяные,</td>
<td>742</td>
<td>434</td>
<td>44,1</td>
<td>1,68</td>
</tr>
<tr>
<td>подтравяные)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Экспозиционно-лесостепные и степные высокогорья и среднетундры</td>
<td>1213</td>
<td>149</td>
<td>1,8</td>
<td>0,22</td>
</tr>
<tr>
<td>6. Лесостепные, степные низкогорья и предгорья</td>
<td>415</td>
<td>124</td>
<td>15,9</td>
<td>1,01</td>
</tr>
<tr>
<td>7. Межгорные котловины с различными вариантами степей и лесостепей</td>
<td>720</td>
<td>528</td>
<td>5,2</td>
<td>1,60</td>
</tr>
<tr>
<td>8. Степные и лесостепные подгорные и возвышенные аккумулятивные равнины</td>
<td>268</td>
<td>32</td>
<td>8,8</td>
<td>0,74</td>
</tr>
<tr>
<td>9. Недренцируемые слабопроточные интразональные и интрапоясные (травно-бугорные,</td>
<td>1501</td>
<td>540</td>
<td>1,3</td>
<td>0,28</td>
</tr>
<tr>
<td>мохово-болотные, галогидроморфные, в том числе межгорных котловин и горных долин)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Долины горных рек</td>
<td>563</td>
<td>420</td>
<td>9,0</td>
<td>0,37</td>
</tr>
<tr>
<td>11. Долины раввинных рек</td>
<td>229</td>
<td>41</td>
<td>2,0</td>
<td>0,18</td>
</tr>
<tr>
<td>12. Лесные возвышенные и подгорные равнины</td>
<td>263</td>
<td>52</td>
<td>0,7</td>
<td>0,21</td>
</tr>
<tr>
<td>13. Аквальные ландшафты</td>
<td>1400</td>
<td>-</td>
<td>0,03</td>
<td>-</td>
</tr>
</tbody>
</table>

1 Рассчитывались при объеме выборок 60,72 для каждой группы ландшафтов.
2 В процентах от общей площади речных бассейнов.
В табл. 2 приведены результаты статистической оценки выделенных групп ландшафтов для выбранных 33 речных бассейнов (см. табл. 1). Обращает на себя внимание относительно низкая средняя высота гляциально-навальных ландшафтов, близкая высоте снеговой границы в наиболее гумидных районах Алтая. Такая ситуация обусловлена следующими причинами. Во-первых, при статистической обработке рассматривались все гляциально-навальные ландшафты, а лишь представляемые в модельных бассейнах. Во-вторых, в расчетах учитывались языки ледников и небольшие реликтовые ледники, в настоящее время расположенные ниже климатической условленной снеговой границы. Следует отметить, что поскольку используемая выборка бассейнов достаточно велика, данные табл. 2 в основном будут близки к средним характеристикам по всей Алтае-Саянской горной стране.

В наглядной форме данные табл. 2 представлены на рис. 2. Из рисунка видно, что чуть менее половины площади Алтае-Саянской горной страны занимают горнолесные ландшафты. При этом ее характерной особенностью с гидрологических позиций является высокое разнообразие ландшафтов, что характеризует страну как чрезвычайно однородную по условиям формирования стока. Ландшафтное разнообразие дополняется и значительной контрастностью природных условий. При этом контрастность проявляется как на региональном уровне, когда резко различаются условия формирования стока отдельных провинций, так и на ландшафтном уровне. В последнем случае нередко наблюдается близкое соседство резко контрастных сред, что нельзя учитывать при оценках стока. В свою очередь, расчеты средней высоты урежа воды (по топографической основе масштаба 1:200000) в рассмотренных речных бассейнах показали, что она составляет в среднем 530 м над уровнем моря. Именно эта высота характеризует средний уровень перехода рассредоточенного стока в руселовой.

В качестве одной из важнейших ландшафтно-гидрологических характеристик, показывающих связь между ландшафтной структурой и речной сетью, можно рассматривать разность между средней высотой бассейна и средней высотой урежа воды реки. Эта характеристика близка по смыслу известному показателю глубины рельефа. Для большинства бассейнов рассматриваемой территории она не превышает 100 м и достигает значений более 200 м лишь для пяти бассейнов. При этом максимальные значения разности высот достигают 350 м и характерны для бассейнов рек, берущих начало в высокогорных хребтах.

Таким образом, создана ландшафтная основа, позволяющая провести комплексный анализ условий формирования гидрологического и гидрохимического стоков горных рек. Представленная типизация ландшафтов легко совмещается с любой базой данных по сезонным и многолетним вариациям гидрологического и гидрохимического стоков в замыкающих бассейны створах. По добное совмещение может позволить, например, выделение составляющих гидрографа методом системно-аналитического моделирования [13, 14] по аналогии с экспертно-аналитическим методом Tardy [2].

Выводы

Выполнена типизация ландшафтных выделов для речных бассейнов Алтае-Саянской горной страны, отражающая условия и особенности формирования гидрологического и гидрохимического речных стоков, в том числе высотно-поясную и структурно-ярусную неоднородность территории.

Выделено 12 типологических групп геосистем. Охарактеризованы их высотная принадлежность и относительный вклад в общую площадь речных бассейнов.

В ландшафтно-гидрологическом отношении Алтае-Саянскую горную страну можно охарактеризовать как территорию, контрастную в типологическом и высотном отношении с доминированием среднегорных и низкогорных лесных ландшафтов.

Разность между средней высотой бассейна и средней высотой урежа воды реки, характеризующей глубину рельефа, для большинства бассейнов анализируемой территории не превышает 100 м, и лишь в отдельных случаях достигает 200-350 м.
ЛИТЕРАТУРА

СВЕДЕНИЯ ОБ АВТОРАХ

КИРСТА Юрий Богданович, доктор биологических наук, профессор.
Институт водных и экологических проблем СО РАН
Адрес: 650038 г. Барнаул, ул. Молодежная, 1
Тел.: (3852) 666457 (р.)
E-mail: kirsta@iwep.asu.ru

ЛУБЕНЕЦ Лилия Федоровна (предпочтительнее вести переписку), кандидат географических наук
Институт водных и экологических проблем СО РАН
Адрес: 650038 г. Барнаул, ул. Молодежная, 1
Тел.: 8 (3852) 666458 (р.), 8-913-65-54 (м.)
E-mail: lilia_lubenets@mail.ru

ЧЕРНЫХ Дмитрий Владимирович, кандидат географических наук, доцент, старший научный сотрудник Лаборатории ландшафтно-водноэкологических исследований и природопользования ИВЭП СО РАН.
Адрес: 650638, г. Барнаул, ул. Молодежная, 1
Тел.: 8 (3852) 666458 (р.), (3852)266175 (м.)
E-mail: cher@iwep.asu.ru