УСТОЙЧИВОЕ РАЗВИТИЕ ТЕРРИТОРИЙ: ТЕОРИЯ ГИС И ПРАКТИЧЕСКИЙ ОПЫТ

Материалы Международной конференции
Белокуриха, Денпасар
14-19 декабря 2011 г.

Барнаул
2011
ИнтерКарто/ИнтерГИС 17: УСТОЙЧИВОЕ РАЗВИТИЕ ТЕРРИТОРИЙ: ТЕОРИЯ ГИС И ПРАКТИЧЕСКИЙ ОПЫТ
Материалы Международной конференции, Белокуриха, Деннпасар
14-19 декабря 2011 г.

Сборник включает материалы, представленные на Международную конференцию ИнтерКарто/ИнтерГИС 17. Рассматриваются теоретические и методические аспекты геоинформационного обеспечения задач устойчивого развития, в том числе вопросы разработки и создания различных геоинформационных систем и новых геоинформационных технологий и виртуальных сред, создания инфраструктур пространственных данных, баз данных, их интеграции и метаданных, геосервисов, обработки дистанционных изображений и исследования Земли из космоса. Предлагаются пути решения управленческих, экономических, градостроительных, планировочных, экологических, медицинских и туристско-рекреационных задач.

Ответственный редактор
В.С.Тикунов – профессор, заведующий научно-исследовательской лабораторией комплексного картографирования и директор Регионального центра Мировой системы данных географического факультета МГУ им. М.В.Ломоносова

Организаторы: Институт водных и экологических проблем СО РАН, Московский государственный университет им. М.В. Ломоносова, Институт вычислительных технологий СО РАН, Национальное координационное агентство по съемкам и картографированию BAKOSURTANAL (Индонезия), Международная картографическая ассоциация (МКА), Международный географический союз (Комиссия по географическим информационным наукам), Комитет по данным для науки и техники CODATA, Международная академия наук Евразии

ИнтерКарто 5 – Якутск, 17–19 июня 1999 г.
ИнтерКарто 7 – Петропавловск-Камчатский, 30 июля–1 августа 2001 г.
ИнтерКарто 8 – Хельсинки (Финляндия), Санкт-Петербург, 28 мая–1 июня 2002 г.
ИнтерКарто/ИнтерГИС 10 – Владивосток, Чанчунь (Китай), 12–19 июля 2004 г.
ИнтерКарто/ИнтерГИС 12 – Калининград, Берлин (Германия), 25–1 августа 2006 г.
ИнтерКарто/ИнтерГИС 13 – Ханты-Мансийск, Йеллоунайф (Канада), 12–24 августа 2007 г.
ИнтерКарто/ИнтерГИС 14 – Саратов, Урумчи (Китай), 24 июня–1 июля 2008 г.
ИнтерКарто/ИнтерГИС 15 – Пермь, Гент (Бельгия), 29 июня–5 июля 2009 г.
ИнтерКарто/ИнтерГИС 16 – Ростов-на-Дону, Зальцбург (Австрия), 3–8 июля 2010 г.
ИнтерКарто/ИнтерГИС 17 – Белокуриха, Алтайский край, Деннпасар (Индонезия), 14–19 декабря 2011 г.

© Международная Картографическая Ассоциация
ATLAS MAPPING IN RUSSIA

N. N. Komedchikov, V. M. Kotlyakov, A. N. Krayukhin, V. S. Tikunov
Moscow City Branch of the Russian Geographical Society
Moscow, Russia
E-mail: mailto:PKO@atkar.ru, tikunov@geogr.msu.su

Key words: atlas mapping, complex atlases, thematic atlases, world atlases, national atlas, regional atlas

The late 20th century was marked by the publication of the following major fundamental world atlases: “Atlas of the world snow and ice resources” (1997), “Our Earth” (1997), “Resources and Environment World Atlas” in two volumes (1998) and “World Atlas” (1999). The creation of these cartographic works can be referred to the most impressive and important results of the Russian cartography in the late 20th century. Continuing the tradition of the Russian school of geographical cartography they are the works of a new generation in terms of the depth of analysis and the novelty of the concerned themes as well as the kind of the information used, the using of new (remote sensing) data, the methods of creation and publication of atlases. The digital complex atlas of the continents “Our Earth” developed in the form of a geographical information system on the basis of ArcInfo and ArcView software has become the first interactive complex atlas of the Earth in the world [Комедчиков, 1998]. All three academic atlases as a result of international cooperation in the sphere of editing and publishing of the largest cartographic works.

The early 21st century is characterized by an unprecedented growth of different atlases publishing: more than one hundred of their titles were issued. Several causes gave rise to such a boom of atlas mapping. Firstly, after Russia accepted the principles of market economy the state monopoly of cartographic activities was eliminated. Many new cartographic companies appeared, they make their publishing policy independently, including the creation of various geographical atlases. Besides that some publishing companies obtain the rights to publish foreign atlases in Russian, thus increasing the variety of scientific reference cartographic production offers at the Russian market. Secondly, the abolition or liberalization of security restrictions concerning topographic maps, satellite images, and other data also contributed to the increase of presentation possibilities of accurate and various thematic data by means of maps and atlases which are available to any user; this fact drove up the demand for cartographic (including atlas) production. Thirdly, the changed social and economic conditions of people life, very fast motorization of Russia, growth of tourist trips have also pushed up the demand for automobile road atlases which flooded the Russian market now. Fourthly, political and economic reforms in Russia and administrative reorganization have helped the governments of regions understand that a geographical atlas along with a flag and an anthem can be a region’s symbol, its main investment guide, a geographical encyclopedia showing and explaining by means of geographical maps the region’s investment attractiveness, its economic and social development, availability of natural resources and labor force, tourist attractions, etc. Regional governments and local authorities have more often become the consumers of such geographical atlases especially before large regional anniversaries. Fifthly, federal ministries and departments also have interest in the creation of geographical atlases, they need these atlases for strategic planning, practical current work, and popularization of their activities. Sixthly, the publication of fundamental scientific and reference atlases by institutes of the Russian Academy of Sciences and geographical departments of universities has become possible due to the possibility to use budgetary funds, as well as the financial resources of nongovernmental and state foundations and private sponsors. The search of funds for
compiling and publishing of geographical atlases is one of the most acute problems, the solution of which influences the variety of atlas products at the Russian market [Комедчиков, 2008, Комедчиков, 2007].

The “National Atlas of Russia” – the fundamental cartographic work summarizing the newest knowledge of Russia, its nature, population, economy, history, and culture – has apparently become a breakthrough in the Russia's complex mapping, the main cartographic work of the recent years in Russia. This atlas was published in four volumes: volume 1 “General characteristics of the territory”, volume 2 “Nature. Ecology”, volume 3 “Population. Economy”, and volume 4 “History. Culture” [Крашенин, 2006]. The best traditions and achievements of Russian and world cartography were implemented and further developed in this atlas. It demonstrates a certain continuation of outstanding examples of the Russian and Soviet cartography. The “National Atlas of Russia” was compiled, prepared for publishing and issued by the Mapping Production Association “Kartografija” with the active participation of scientists and specialists from more than fifty scientific organizations of different authorities: the Russian Academy of Sciences (Institute of Geography, Institute of Global Climate and Ecology, Institute of Russian History, Institute of Archaeology, S.I. Vavilov Institute of the History of Science and Engineering, Institute of Fundamental Problems of Biology, and others), Departments of Geography and Soil Science of Lomonosov Moscow State University, D.S. Likhachev Russian Research Institute of Cultural and Natural Heritage, A.P. Karpinsky All-Russian Geological Research Institute, National Information Agency “Natural Resources”, Russian State Library, and others.

Without going into the details of the contents of each volume of the atlas we would like only to mention some of its characteristics which were displayed comprehensively and completely for the first time in the Russian atlas mapping. For example, scientific and reference description of the history of the formation, exploration, and mapping of Russia’s territory from ancient times up to the late 20th century in volume 1 of the atlas is represented for the first time. Such encyclopedically data-intensive and comprehensive historical and geographical description which is richly illustrated by historical maps, photos, and old maps fragments is apparently one of the most important and interesting sections of the first volume, its highlight. The second and third volumes of the “National Atlas of Russia” give bright and all-round characteristics of the natural environment and resources of Russia, as well as the ecological, social and demographic, and economical conditions of its territory. They cover a lot of new original themes. The fourth volume for the first time presents and gives characteristics of the complex of natural and cultural heritage sites both in Russia as a whole and in its individual regions. Archaeological sites, monuments of military history, religious, civil, and industrial architecture, monumental art, vernacular arts and artistic crafts, plans of conservation areas (open-air museums), memorial estates, monasteries, Russian citadels and fortresses are displayed on compiled maps supplemented by numerous photos of heritage sites and informative explanatory texts – all this as a whole is unprecedented not only in Russia but also in the world. One more distinctive feature of the “National Atlas of Russia” is the incorporation into it of a great number of Russian space images which, on the one hand, reflect structural and developmental features of the components the Earth’s physical environment, some its common characteristics and individual peculiarities of different objects and natural phenomena and, on the other hand, supplement map contents as far as local landscape features are concerned. Space images accompanied by short descriptions enrich and specify information given on maps, serve as independent components of the atlas contents, provide powerful means of scientific research, education, showing different possibilities of the interpretation of space surveys materials.

The idea of the sustainable development of regions is the basis of the concept of the two-volume “Atlas of the Khanty Mansi Autonomous Okrug (District) – Yugra” prepared by the Department of Geography of Moscow State University and Scientific and Production Center “Monitoring” (Khanty-Manyskiy) in cooperation with a number of Russia’s leading research and production organizations. Its 26 thematic units contain detailed and complex characteristics of okrug’s history, demography, economy, nature, and ecology. And it is necessary to pay attention to the distinct inversion in the long-standing tradition of thematic parts sequence in the atlas. It begins with
presentation of the history, population, and economy of the okrug, and only then it gives characteristics of its nature and resources potential and today's environmental situation. Such thematic sequence is justified in the work [4] and time will show if it will be adopted by the practice of regional atlas mapping, but we can admit that it is variable and acceptable in case when the research priority is given to the anthroposphere and its role in the deformation of the environment integrity. In order to show mapping subjects most completely and expressively, the following methods, developed in the course of atlas geographical mapping practice, were used in the atlas: 1) multi-level display of phenomena and objects – on the world, federal, regional, and local levels (at different scales, respectively), and in some cases it is well done by means of anamorphoses; 2) comparative geographical display of peculiarities of the autonomous okrug area against other entities of the Russian Federation; 3) making comparisons between the autonomous okrug area and some foreign territories, etc.

Large, finely colored comprehensive “Atlas of Moscow: Cartographic Encyclopedia” was published to the 860th anniversary of Moscow, it vividly and fully represents all spheres of capital’s life, its modern state, nature, history, and perspectives of development. The Atlas was prepared to publication by the Closed Joint-Stock Company “Associated Cartographic Center-M” with the participation of some production, scientific, and educational organizations of Moscow. More than 1,000 illustrations and popular science texts supplement the atlas maps contents harmoniously. Much attention is paid in the atlas to the history of Moscow mapping which is shown by means of old maps and plans of the 16th - 20th centuries. The atlas contains old and new air photographs, including some of them in the form of anaglyphs, as well as a large-scale map of Moscow compiled especially for this edition. The “Atlas of Moscow” is not only a cartographic work, but also a reference book, a guide book, and an art book published on a high graphic level.

Another big complex atlas - “Siberia: Atlas of Asian Russia” – was prepared for publication by Publishing and Producing Center “Design. Information. Cartography” in cooperation with the scientists and specialists of the Russian Academy of Sciences, Department of Geography of Moscow State University, and Russian Research Institute of Cultural and Natural Heritage. This is a complex and encyclopedic cartography work covering natural environment and resources, history, culture, ethnography, and economy of Asian Russia; it presents information integrally, systematically, and most completely both on Siberia as a whole and on its individual historical and cultural, economical, natural and administrative regions. To our opinion, the uniqueness of this atlas results from an illustrative imaging of the history of Siberia, stages of its development, exploration and mapping, intellectual and material culture of indigenous peoples (their economy, crafts, means of transportation, art) and Russian settlers in Siberia (long-standing inhabitants, migrants, Cossacks, Old Believers, and others). Old maps, documents, illustrations, excellent art photos are naturally integrated in the atlas contents. Elegant design and printing art are also important characteristics of this atlas.

Fundamental scientific and reference geographical “Atlas of the Kuril Islands” compiled by the scientists and specialists of the Russian Academy of Sciences (Institute of Geography of RAS, the Pacific Institute of Geography of the RAS Far Eastern Branch) in cooperation with other Russian scientific and production organizations, and prepared to publication also by Publishing and Producing Center “Design. Information. Cartography” is the first regional atlas of island geosystems in the world. Its 270 new original thematic maps and explanatory texts to them characterize all main aspects of history, nature, population, and economy of the Kuril Islands as well as their exceptionally important geopolitical position among the countries of the Asian and Pacific Region. The atlas contains more than 650 illustrations (photos, space images, depictions of old maps and artifacts) which allow present vividly the unique nature and resources, rich history and modern life of the Kuril archipelago. The atlas summarizes the results of scientific and field research of the Kuril Islands and the adjacent water area for more than sixty years. As for the scale of main basic thematic maps (1:500,000), detailed character and originality of the given information, elaboration of themes and topics, it has no analogues in modern mapping of underdeveloped areas.

The “Atlas of Social and Economic Development of Russia” was prepared by Department of Geography of Moscow State University in cooperation with the institutes of the Siberian Branch of the Russian Academy of Sciences – V.B. Sochava Institute of Geography, the Baikal Institute of Nature Management, the Institute of Natural Resources, Ecology and Cryology - as well as the Mapping Production Association “Kartografija”. It is a complex multipurpose cartographic model which allows to analyze quantitative and qualitative changes which took place in our country at the turn of the 21st century in the spheres of demography, economy and social relations. Analytical, complex, and synthetic maps of the atlas characterize the changes in the main demographic indices and the population life quality, the modern state and dynamics of the main industries, the long-term plans and projects. For the first time in the Russian cartography this atlas gives detailed characteristics of the border regions. The Baikal region is represented as an example to characterize the spatial regularities of economy and population distribution and development on a basis of available resources in an individual region.

For most mentioned atlases their electronic versions are also created. It has already become common in atlas mapping. Atlases in electronic form are put into the Internet and other national and international information nets. They become an important means of geospatial planning and management, a source of scientific and reference information, means of training and education. An atlas is more often considered not as a single of work, but as a system of cartographic works in paper and electronic forms, geospatial databases, and user programs (interfaces).
The fundamental atlases mentioned above are the most important state information resource and a source for formation of geographical and thematic spatial databases covering both Russia's and foreign territories, which are necessary for the solution of various economic, social, scientific, educational, and political problems.

In the era of information society electronic atlases are considered to be the future of atlas mapping. And open interactive atlas information systems will play an especial role, they will allow any user on a basis of information contained in an atlas to create his own versions of maps, to add the map contents with new data, to model 3D-images, etc., but the main thing is to solve various practical problems. But traditional paper atlases will also be a common phenomenon of our life for a long time. Traditional atlases will survive until book (paper) printing trade survives.

REFERENCES

1. Komedchikov N.N. Modern cartography: results and prospects (according to materials of the 1st All-Russian scientific conference on cartography "Cartography at the turn of the millennium ") //Izvestiya RAN. Ser. geogr., 1998, No. 2. P. 121-130. (in Russian)

NEW STAGE OF MAPPING FOR THE HIGHER SCHOOL

Mikhail N. Gubanov, Anna Y. Koghuhar, Tatiana V. Kotova, Valentina V. Maslennikova, Tatiana S. Nokelainen, Natalia N. Talskaya, Vladimir S. Tikunov
Geographical Faculty
M.V.Lomonosov Moscow State University
Vorobyevy Gory, 1 Moscow 119991
Russia
E-mail: lcm@geogr.msu.su

Abstract. The geographical faculty of the Moscow University works over preparation of maps for the higher school. Features of the present stage high school mapping, actual problems and a condition of works are described.

Введение

Работа выполнена при поддержке грантов РГО "Новые карты России" (договор № 38/08/2011) и Минобрнауки РФ (ГК № 14.740.11.0200)
методическим результатом этих работ стало формирование вузовского как особого направления научно-справочного картографирования. На основе анализа учебных планов, программ основных курсов и применяемых методик использования карт впервые была обоснована, разработана и предложена система картографического обеспечения вузов, органически вписанная в образовательную систему высшей школы. Итогом этих разработок стал фонд из более 150 наименований карт разной тематики, территориального охвата и масштабов [Карты для высшей школы..., 1977; Новые карты для высшей школы..., 1987; Салищев и др., 1980].

В сентябре 2011 г. многочисленные заявки на подготовку карт были поддержаны Русским географическим обществом, выделившим грант Географическому факультету МГУ на реализацию проекта «Новые карты России», в который вошли также карты для высшей школы. Факультет с опытом научно-методического руководства, подготовки и редактирования карт на двух первых этапах [Талызина, Губанов и др., 2005], приступил к этим работам и одновременно к поиску новых форм внедрения картографических произведений в медийную среду высшей школы.

Особенности современного этапа вузовского картографирования определяются изменениями в природе и обществе, темами развития наук о Земле, накоплением новой информации, прогрессом в развитии компьютерной техники и технологий, существованием и развитием общества в среде с огромным информационным и коммуникативным потенциалом.

С уче том мировых тенденций, отражающих важную роль образования в современном обществе, в новых сложившихся экономических условиях важно не растерять в стране традицию высококачественного картографического обеспечения высшей школы, подготовить картографические произведения, соответствующие задачам и потребностям нового информационного общества. Они должны базироваться на последних научных методологических достижениях, возможностях современных технологий, в частности средств мультимедиа в современном образовании [Андерсен, 2007], которые открывают доступ к нетрадиционным источникам информации, позволяют реализовать принципиально новые формы и методы обучения с применением средств концептуального и математического моделирования явлений и процессов.

Очевидно, что в новых условиях рыночных отношений трудно рассчитывать на реализацию многоматериальных картографических проектов даже в такой области, как образование.

Актуальные задачи вузовского картографирования С учетом этих обстоятельств в качестве задач вузовского картографирования в ближайшей и долгосрочной перспективе можно рассматривать: 1) приведение концепции картографического обеспечения вузов в соответствие с новыми возможностями и достижениями преподавания в высшей школе; 2) подготовку первоочередных общенаучных и специализированных (отраслевых) карт, предназначенных для основных вузовских дисциплин; 3) подготовку карт, обеспечивающих новые специальности и специализации (география туризма, электоральная география, география бизнеса и др.); 4) разработку карт актуальной тематики мировоззренческой направленности; 5) разработку картографических произведений нового поколения, реализуемых в виде ГИС-версий и тиражируемых на компакт-дисках или помещаемых на Интернет-странице (в будущем геопортале) Географического Факультета МГУ им. М.В.Ломоносова для заинтересованных пользователей.

При корректировке концепции картографического обеспечения целесообразно руководствоваться следующими соображениями: 1) более строгое следование научно-методическим требованиям вузовского преподавания, как это было при создании карт первого этапа; в этом случае карты останутся доступными для понимания, наглядными и привлекательными источниками информации и не будут вызывать отторжения из-за невозможности их грамотного использования; 2) при сохранении разнообразия видов вузовских картографических произведений (атласы, карты, пособия) расширить формы их реализации через подготовку электронных версий и последующего распространения на компакт-дисках и в Интернете; 3) формирование перечня карт с учетом очередности и сроков их создания. Перечень карт должен готовиться с учетом важности для вузовского преподавания, актуальности и новизны тематики, степени информационного обеспечения темы, сопряженности с общей системой картографического обеспечения. Кроме того, важно определить необходимый минимум карт, которые должны тиражироваться полиграфическим способом (преимущественно настенные карты), тогда как основная часть может создаваться на электронных носителях и использоваться с помощью компьютерной техники.

Для определения перечня первоочередных базовых карт (традиционной тематики) необходимо ревизия существующего фонда карт с целью их разделения на две группы. Первая включает карты устаревшие и не адекватно отражающие географическую реальность по причине исходной концепции, значительных изменений в географии пространственно-временных категорий картографируемых явлений и процессов и не соответствия степени изученности. Так, например, среди карт природы по этим критериям подлежат пересоставлению карта растительности, использования земель, охраны природы и ряд других. К тому же содержание карт должно быть сориентировано на территорию в границах России, что неизбежно отразится на содержательной генерализации и структуре легенды.

Ко второй группе относятся ранее разработанные карты природы, которые существуют в виде авторских оригиналов, штриховых и красочных проб. Они могут быть обновлены и подготовлены к опубликованию (в виде бумажных карт или в виде электронных изображений на компакт-дисках) с относительно небольшими затратами в первую очередь и сравнительно быстро. В эту категорию попадает,
например, карта лесов. До настоящего времени на территорию России, "лесную" державу, нет карты для вузов. Положение может быть исправлено путем обновления имеющихся авторских материалов, главным образом по космическим снимкам.

Значительно более сложна ситуация в отношении социально-экономических карт. Социально-экономические карты для вузов, за небольшим исключением, должны разрабатываться заново. Имеющиеся карты в значительной мере не отвечают основным требованиям – современности и достоверности и в основном представляют лишь историческую ценность. Переход экономики России к рыночным отношениям, углубляющаяся интеграция в систему мирового хозяйства, интенсификация использования природных ресурсов, обострение демографической ситуации, напряженность в сфере обеспечения трудовыми ресурсами привели к значительным изменениям в системе подготовки специалистов. Это, в свою очередь, требует создания соответствующих картографических произведений, пригодных для получения и анализа пространственной информации в социально-экономической сфере. На Географическом факультете МГУ разработана серия настенных тематических карт мира для средней школы масштаба 1:20 000 000. Эти карты (экономическая, сельского хозяйства, природных ресурсов, нефтеперерабатывающей промышленности, энергетики, транспортной сети), созданные на основе новейшей информации, используются в учебном процессе и в высшей школе, поскольку нет современных вузовских аналогов.

Большие изменения на политической карте мира и в географии мирового хозяйства последних десятилетий в значительной мере изменили и саму систему подготовки специалистов высшей квалификации, появились новые специальности и специализации.

Создание новых карт социально-экономической тематики связано с необходимостью обработки большого объема статистической информации по населению, запасам и объемам добычи минерального сырья, объемам промышленного и сельскохозяйственного производства, степени загрязнения окружающей среды и т.д. При использовании геоинформационных технологий обновление и разработка новых карт для вузов вполне реальная задача, хотя информационное обеспечение этих работ требует значительных затрат.

Особого внимания заслуживают природные и социально-экономические карты мира. Их тематический спектр остается крайне ограниченным. Между тем совершенно очевидна потребность в таких картах, как и необходимость рассмотрения многих явлений и процессов в общемировом контексте.

Необходимо планировать и подготовку особой группы карт, которую обозначим как карты «мировоззренческой направленности», которые представляют актуальные гуманитарные, экономические общемировые и национальные проблемы (устойчивого развития, экологические, этнографические, политические, и др.) и пользовательская аудитория которых далеко выходят за традиционные вузовские, использующие карты как средство обучения. Среди них отметим карты глобальных проблем человечества (ресурсных, социально-демографических, экологических, геополитических), устойчивого развития стран и регионов (например, Арктики в условиях изменения климата и повышенного международного интереса к ее запасам и промышленному освоению). Содержание карт такой тематики может быть представлено на одном листе в виде серии равноценных сюжетов. Так, тема ресурсных проблем человечества может состоять из следующих мировых карт - «Сырьевая проблема», «Дефицит водных ресурсов», «Сокращение площади лесов», «Снижение биологического разнообразия», «Энергетический дисбаланс».

Разработка картографических произведений нового поколения

Наиболее эффективным способом хранения и целенаправленного использования информации, заложенной в картах для высшей школы, является создание на их базе проблемно-ориентированных ГИС. Как известно, составной частью всякой ГИС являются цифровые карты, содержание которых при необходимости выводится на экран в виде электронных изображений, которые принято называть электронными картами. Поэтому первым этапом создания ГИС-версий карт для высшей школы является перевод существующих картографических произведений в электронную форму. Для расширения
возможностей обновления и большей детализации имеющейся информации, ее целенаправленного отбора и обработки для анализа и синтеза необходимо иметь электронные карты в векторном формате.

Тематические ГИС должны содержать особую базовую тематическую карту, объединяющую в определенной мере содержание конкретных карт и выполняющую организующую роль в системе электронных карт. В качестве базовой может использоваться одна из карт тематической серии. Так для прикладных карт эколого-природоохранной тематики наиболее подходит на роль базовой ландшафтная карта, геологическая серия базируется на общеэлементарной карте и т.д. Этим может определяться и последовательность подготовки компьютерных карт в векторном формате.

Переход от тематических серий электронных карт для высшей школы к полнофункциональным тематическим ГИС требует создания специализированных баз данных и разработки систем управления ими. Это наименее сложная, трудоемкая и дорогостоящая часть работ в этом направлении. Более реальна в настоящее время разработка ГИС-версий отдельных тематических карт и или их серий по типу электронного атласа "Наша Земля" [6], который, кстати, создавался с использованием вузовских карт. Такая работа начата в лаборатории.

<table>
<thead>
<tr>
<th>Нефтегазоносные территории и акватории с различной плотностью начальных суммарных извлекаемых ресурсов углеводородов</th>
<th>Трубопроводы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Действующие</td>
<td>Строительство сжигательных трубопроводов</td>
</tr>
<tr>
<td>Строительство</td>
<td>Нефтяные трубопроводы</td>
</tr>
<tr>
<td>Проектируемые</td>
<td>Газопроводы</td>
</tr>
<tr>
<td>Нефтяные трубопроводы</td>
<td>Нефтепродукто-</td>
</tr>
<tr>
<td></td>
<td>транспортирования</td>
</tr>
<tr>
<td></td>
<td>Газопроводы</td>
</tr>
<tr>
<td></td>
<td>Каналопроводы</td>
</tr>
<tr>
<td>Береговые и акваторные станции</td>
<td>Нефти</td>
</tr>
<tr>
<td>Газомаслонапорные станции</td>
<td>Нефтепродуктов</td>
</tr>
<tr>
<td></td>
<td>Бункерные терминалы</td>
</tr>
<tr>
<td>Нефтеперерабатывающие заводы</td>
<td>Крежнячные</td>
</tr>
<tr>
<td>крупные</td>
<td>топливный</td>
</tr>
<tr>
<td>средне</td>
<td>топливно-битумный</td>
</tr>
<tr>
<td>мелкие</td>
<td>топливно-масляный</td>
</tr>
<tr>
<td></td>
<td>топливно-химический</td>
</tr>
<tr>
<td>Шайково (Башкортостан)</td>
<td>Предприятия по переработке подземного газа и газоконденсата</td>
</tr>
<tr>
<td>Касимовское</td>
<td>Подземные газохранилища</td>
</tr>
</tbody>
</table>

Рис. 1. Фрагмент легенды карты «Нефтяная и газовая промышленность России» масштаба 1:4 000 000

Современное состояние работ по вузовским картам

В настоящее время факультет приступил к разработке новой вузовской карт в соответствии с грантом РГО. Перечень карт сформирован на основании следующих соображений: 1) важность для вузовского преподавания, актуальность и новизна тематики, оригинальность тематического содержания; 2) степень информационного обеспечения темы; 3) временные сроки, отведенные грантом для работы над проектом; 4) сопряженность с общей системой картографического обеспечения, согласующаяся с методологией географического картографирования. К разработке карт, как и прежде, привлекаются ведущие
ГЕОИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УСТОЙЧИВОГО РАЗВИТИЯ ТЕРРИТОРИЙ И ГИС-ПРОЕКТЫ

ученные университетов, научно-исследовательских институтов, различных организаций. Среди вновь разрабатываемых карт – Нефтяная и газовая промышленность России, Селевые явления мира, Биомы и др. Фрагмент легенды одной их них приведены на рис. 1.

Актчуальность тематики этих карт не вызывает сомнений. Карта "Нефтяная и газовая промышленность России" масштаба 1:4 000 000 при использовании ее в учебном процессе будет способствовать формированию у студентов целостного представления о состоянии отрасли в период, когда сохраняется сырьевая направленность экономики России. Карте "Селевые явления мира" масштаба 1:15 000 000 нет аналогов в отечественном и мировом тематическом картографировании. Это первая свodka (в картографическом виде) информации о селевой опасности отдельных территорий мира.

Заключение

Насыщенность информационного пространства картами разного содержания, и заметим нередко сомнительного качества, совсем не отменяет необходимость обеспечения вузов и средних школ картографическими произведениями, отвечающими самым современным требованиям преподавания. Отечественная географическая картография имеет бесценный опыт и традиции создания таких произведений. Их приумножение и обогащение за счет последних научно-технических достижений будет только способствовать повышению качества образования. Просматривается перспектива сопряжения визуализации карт и других графических изображений с системами мультимедиа, предполагающими стереозвучивание в виде дикторского текста, музыки и т. д. Но это возможно в дальней перспективе в случае привлечения широкого круга специалистов разной квалификации.

ЛИТЕРАТУРА

5. Тальская Н.Н., Губанов М.Н., Котова Т.В., Масленников В.В. Научно-методические основы создания серии карт для вузов//География, общество, окружающая среда. Т. VII. Картахена, геоинформатика и аэрокосмическое зондирование. – М., Изд. дом Городец, 204. – С. 499-506.

ГЕОИНФОРМАЦИОННЫЕ СИСТЕМЫ ПО ВОЗОБНОВЛЯЕМОЙ ЭНЕРГЕТИКЕ

Новаковский Б.А., Прасолова А.И., Киселева С.В., Рафикова Ю.Ю. Географический факультет
Московский Государственный университет имени М.В. Ломоносова
Москва, Россия
E-mail: prasolova.geo@vandex.ru; k_sophia_v@mail.ru; ranel@pochta.ru

GEOPHICATION SYSTEMS ON RENEWED POWER

Novakovsky B.A., Prasolova A.I., Kiseleva S.V., Rafikova J.Yu.
Faculty of Geography
M.V.Lomonosov Moscow State University
Moscow, Russia
E-mail: prasolova.geo@vandex.ru; k_sophia_v@mail.ru; ranel@pochta.ru

Abstract. The growing interest to projects on renewable energy all over the world sets up not only technological and technical problems, but also problems with possibility and efficiency estimations. Geoinformatical technologies are useful in solving these complex of various problems. The work contains review of existing world GIS-projects on renewable energy sources and possible approaches for creation such kind of geoinformatical systems in Russia.

Возобновляемая энергетика характеризуется многогранностью, разнообразием характеризующих её критериев и составляющих. В перечне задач, возникающих при осуществление проектов возобновляемой энергетики (ВЭ) (помимо технологических и технических), особо выделяются проблемы оценки 10
возможности и эффективности использования возобновляемых источников энергии (ВИЭ) для энергообеспечения регионов [Попель и др., 2010, Соловьев, 2009].

Очевидно, что при этом с одной стороны необходимы обширные массивы информации, охватывающей как природные ресурсы территории, так и экономические характеристики региона (инфраструктура энергетики, энергетические балансы, линии электропередач, наличие предприятий лесной, деревообрабатывающей, пищевой и других отраслей промышленности; характеристики сельскохозяйственного производства и проч.). С другой стороны, необходимо привлечь такие инструменты анализа, которые позволили бы собирать, оперативно модернизировать и преобразовывать эти массивы данных, отображать их; путем всестороннего анализа получать на их основе обоснованные оценки и делать расчеты.

Одновременно следует учитывать, что зачастую пользователя интересуют комплексные оценки по различным видам источников энергии. В конкретных регионах наиболее эффективным может стать либо использование гибридных энергоустановок, либо создание нескольких установок (стаций) на различных типах энергии. В связи с комплексностью указанной проблемы, а также известной «региональностью» возобновляемой энергетики, становится возможным и актуальным использование инструментария геоинформационных технологий.

В настоящий момент за рубежом имеется достаточно успешный опыт использования ГИС-технологий в области возобновляемой энергетики. Энергетические компании широко используют геоинформационные системы для разработки проектов. В частности, недавно осуществленный выбор подходящего участка для размещения комплекса ВЭС на континентальном шельфе Нидерландов был проведен с использованием локальной ГИС. Она позволяла интегрировать и в комплексе проанализировать многие лимитирующие факторы проекта, такие как пути и интенсивность судоходства, территории разработки нефтяных месторождений и пути прокладки нефтепроводов, маршруты миграции птиц, ограничения со стороны военных ведомств и т.д. При оценках учитывалось влияние каждого из этих факторов, что обеспечило детальный анализ пригодности и экологической чувствительности того или иного участка в процессе выбора мест для строительства энергообъектов.

Рассмотренные в ходе исследования зарубежные геоинформационные ресурсы по ВЭ можно подразделить по охвату территории на:

- локальные;
- региональные;
- национальные;
- глобальные.

По направлениям ГИС можно выделить однокомпонентные ГИС (рассматривается только один из ВИЭ: солнце, ветер, или биомасса и т.п.) и многокомпонентные (включающие в себя несколько ВИЭ).

По типу информации, включаемой в ГИС ВИЭ, и используемой для оценки целесообразности и выгодности проектов по ВИЭ можно выделить:

- Данные для оценки ресурсов ВИЭ (комплекс метеорологических и анометрических данных; описание гидрогеологических скважин с данными о физических и химических характеристиках геотермальных месторождений; гидрологические данные; данные по отходам производств и жизнедеятельности человека, населению и пр.);
- Технические характеристики установок на ВИЭ (для расчетов предполагаемой выработки электроэнергии);
- Экономические предпосылки (цены на энергию от традиционных и нетрадиционных источников (в целях сравнения); энергетические балансы регионов; предприятия, производящие энергоустановки на ВИЭ; инвестиции в данную область, налоговые льготы на использование ВИЭ, зарплаты работников объектов на ВИЭ и т.д.)
- Социальные предпосылки (занятость населения и потенциальные рабочие места от строительства объектов на ВИЭ; соотношение новых рабочих мест и прогнозируемого объема вырабатываемой энергии; уменьшение негативных факторов, влияющих на здоровье населения за счет снижения вредных выбросов и т.д.).
- Природоохранные аспекты (величина снижения вредных выбросов при использовании ВИЭ: снижение загрязнения почв и воды, уровень радиации (в районах, где использовалась атомная энергетика) и т.д.).

Рассмотрим подробнее некоторые зарубежные геоинформационные системы.

1) Атлас возобновляемой энергетики Вермонта [www.vtenergyatlas.com] – региональная ГИС, разработанная на основе ArcGIS 9.3.1. Включает в себя детальную информацию о действующих объектах возобновляемой энергетики на территории штата Вермонт (США), а также о потенциале территории для создания такого рода объектов. В атлase доступны данные по следующим источникам:

- биомасса;
- геотермальные источники;
- малые водные потоки;
- солнечная энергия;
• ветровая энергия.

Детальность отображения информации – до отдельных зданий, что позволяет оценить возможность использования энергии солнца или геотермальной энергии (тепловые насосы) для каждого объекта. Таким образом сформирована информация о животноводческих фермах и о предприятиях общественного питания – потенциальных производственных отходов.

Атлас предназначен для широкого публичного использования, обладает простым интерфейсом и бесплатно доступен в сети Интернет. Таким образом, ГИС решает также задачу широкого информирования, образования в области возобновляемой энергетики и создания благоприятного общественного мнения, недостаточность которых является зачастую (для условий России – особенно) одним из сдерживающих факторов развития этой отрасли.

2) Созданная в Национальной лаборатории ВИЭ США (NREL USA) Renewable resources map and data [www.nrel.gov/gis/about.html] является геоинформационной системой национального уровня. По тематической широте, объему предоставляемой информации и охвату территории данная ГИС является, по-видимому, в настоящее время наиболее представительной и развитой среди аналогичных зарубежных национальных ГИС. Открыта для свободного доступа версия в Интернет включает: динамические карты, базы данных, инструменты, позволяющие пользователю иметь доступ к картам, данным и проводить анализ ресурсов возобновляемой энергетики для определения, какие технологии наиболее жизнеспособны (конкурентоспособны) для США и других стран.

В ГИС NREL представлен обширный перечень разноразовых карт и данных по ресурсам солнечной, ветровой, геотермальной энергии и энергии биомассы. Все данные доступны, как в виде карт, так и в виде отдельных слоев, которые пользователь может комбинировать самостоятельно, используя размещённое на сайте программное обеспечение.

Кроме карт, NREL предоставляет пользователю в виде баз данных некоторые первичные данные и данные моделирования. Так, первичные данные по ветровым ресурсам представлены в виде следующих полноценных ГИС-продуктов: Национального атласа ветровых ресурсов США и базы данных по ветровой энергии западной и восточной частей США. Предоставляемые пользователю инструменты анализа данных позволяют получать производные массивы информации, например, оценить количество электроэнергии, вырабатываемой ветроустановками или фотореакторами в данной географической точке, сжигаемые средства по текущим тарифам на электроэнергию при установке сетевых фотоэлектрических систем и т.д.

В файлах метаданных содержится описание методик получения данных и проведения расчетов, что является весьма важным для пользователя, желающего оценить точность оценки потенциала выбранного ресурса, или выработки энергии задаваемым типом установки. Используемые при расчетах методики и источники исходных данных могут быть предметом дискуссии, но они приведены, описаны и сопровождаются обоснованием.

В 2011 году на сайте NREL стали доступны бесплатные ГИС-пакеты не только для территории США, но и для Афганистана, Бангладеша, Бутана, Бразилии, Китая, Сальвадора, Ганы, Гватемалы, Гондураса, Индии, Непала, Никарагуа, Пакистана, Шри-Ланки и Турции.

3) 3TIER Renewable Energy [www.3tier.com] - коммерческий ГИС-продукт, который предоставляет в открытом (демонстрационном) режиме только устол Firstlook по первичной оценке ресурсов трех источников возобновляемой энергии: ветра, солнца и водных потоков. Она позволяет сделать некоторые заключения о содержании и возможностях данного программного продукта. Оценка ветроэнергетических ресурсов основывается на данных наблюдений и результатах численного моделирования атмосферной циркуляции с учётом рельефа местности и свойств поверхности. Пространственное разрешение модели составляет 5 км. Данные для расчетов модели берутся из открытых источников метеорологической информации. Разница между наземными измерениями и предсказаниями модели менее 0,5 м/с на 50% станций наблюдения и менее 1 м/с на 78% станций.

Оценка ресурсов солнечной энергии производится на основе данных спутниковых наблюдений и моделирования. Аналогичные подходы используются при оценках падающей солнечной радиации в базе данных NASA SSE, которая как информационный источник в настоящее время является наиболее востребованным и отдельными пользователями, и программными продуктами по возобновляемой энергетике. Пользователю не предоставляется информация об исходных данных для построения моделей обеспеченности ресурсами гидроэнергии.

Помимо возможности оценивать ресурсы ВИЭ на данной территории, программное обеспечение 3TIER Renewable Energy предлагает услуги по проектированию электростанций, а также по управлению ими. Например, в блоке ГИС по ветроэнергетике, предлагается прогноз выработки энергии электростанцией на час, сутки и неделю вперёд. Коммерческий доступ к такой информации возможен в любой момент времени. Для повышения точности прогноза может быть использована текущая информация с ветроизмерительных станций на площадке ВЭС, а также база данных с историей выработки ВЭС. Точность прогноза при этом не указана.
ГЕОИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УСТОЙЧИВОГО РАЗВИТИЯ ТЕРРИТОРИЙ И ГИС-ПРОЕКТЫ

Рис. 1. Типы информации для создания многоуровневой ГИС
Таким образом, продукт, предлагаемый компанией 3TIER, характеризуется наличием постоянно обновляемой базы данных, а также возможностью пополнения ее собственными данными пользователями; инструментами анализа данных для получения на их основе новой «производной» информации, представлением результатов в виде диаграмм, графиков, карт и других визуальных объектов. Однако, отсутствие информации о методиках проведения расчетов, а также оценка точности прогноза являются весьма критичным.

В качестве продуктов, выполняющих сходные с ГИС функции, но дающих, в основном, лишь информационную базу для дальнейшего анализа можно рассматривать разработанные в последние два десятилетия международные базы данных (БД), охватывающие территории различного масштаба (NASA SSE [http://cosweb.larc.nasa.gov/sse/], WRDC [http://wrdc.mgo.rssi.ru], SOLARGIS [http://solargis.info/imaps, METEONORM [http://solargis.info/imaps] и др.). Некоторые из них доступны через сеть Интернет, другие являются коммерческими продуктами. Являясь, по сути, базами климатической информации, указанные БД предполагают исходные массивы, позволяющие проводить количественные оценки (или качественную характеристику) в основном лишь ресурсов солнечной и ветровой энергии, а также моделирование работы соответствующих установок и систем. Информационной основой для них служат как данные наземных измерений, так и результаты спутникового мониторинга и моделирования (модели общей циркуляции атмосферы и распространения солнечной радиации в атмосфере). Ряд БД включает в себя карты рельефа местности и типов ландшафтов.

В России на данный момент нет аналогов зарубежным БД по возобновляемой энергетике. Началом работы в этом направлении стали ГИС-проекты по гидроресурсам для отдельных областей, Атлас ресурсов солнечной энергии на территории России [Попель и др., 2010] и база климатических данных [Попель и др., 2010].

На протяжении многих лет область ВЭ в России прогрессировала весьма слабо, потеряв лидирующие позиции в целом ряде направлений. Впрочем, сейчас интерес к возобновляемой энергии во всём мире и экологическая составляющая вносят новые драйверы. Кроме того, энергоэффективность отдельных регионов России (как удаленных, так и центральных, но слабо обеспеченных энергией ввиду большего её потребления) позволяет возобновляемой энергетике занять свою нишу в общей энергетике России.

Создание геоинформационной системы по возобновляемым источникам энергии для отдельных регионов России и, в целом, для всей страны могло бы стать серьёзным шагом в развитии этой области.

Одной из первых задач при создании ГИС является разработка её структуры, выбор номенклатуры баз данных и анализ исходных источников информации. В силу разнообразия ресурсов и необходимости с различной плотностью отображать их характеристики целесообразно создание многоуровневой ГИС (регионального и локального уровней). Важным при этом является рассмотрение и типов информации, указанных на рис. 1.

Кроме того, в ГИС должны быть предусмотрены:
- возможность отображения различных видов ресурсов ВЭ;
- создание инструментов для моделирования работы систем возобновляемой энергетики и отображения — в том числе и в картографическом виде — его результатов;
- возможность представления в ГИС большого массива информации об инфраструктурных элементах возобновляемой энергетики.

На первом этапе наших исследований в настоящий момент решаются задачи разработки архитектуры ГИС «Возобновляемые источники энергии» для регионов России, подробный анализ и структурирование существующих фактических источников для подготовки баз данных.

Исследования проводились при финансовой поддержке Федеральной целевой программы “Научные и научно-педагогические кадры инновационной России” на 2009-2013 годы.

ЛИТЕРАТУРА

2. Попель О.С., Фрид С.Е., Киселева С.В., Коломиец Ю.Г., Лисицкая Н.В. Климатические данные для возобновляемой энергетики России (База климатических данных); Учебное пособие. – М.: Изд-во МФТИ, 2010. – 56 с.
5. www.vtenergyatlas.com (12.10.2011)
7. www.3tier.com (12.10.2011)
МАТЕМАТИКО-КАРТОГРАФИЧЕСКАЯ ОЦЕНКА
ЭТНИЧЕСКОГО РАЗНООБРАЗИЯ В РЕГИОНАХ РОССИИ

Рязанцев С.В.1, Тикунова И.Н.2, Тимонин С.А.2
1 Институт социально-политических исследований РАН
2 Московский Государственный университет имени М.В.Ломоносова
Москва, Россия
E-mail: riazan@mail.ru, tikunov@geogr.msu.su, ser-timonin@yandex.ru

MATHEMATICAL-CARTOGRAPHIC ASSESSMENT OF ETHNICAL DIVERSITY IN RUSSIAN REGIONS

Ryazancev S.V. 1, Tikunova I.N. 2, Timonin S.A. 2
1 Institute of sociopolitical researches of the Russian Academy of Sciences
2 M.V.Lomonosov Moscow State University
Moscow, Russia
E-mail: riazan@mail.ru, tikunov@geogr.msu.su, ser-timonin@yandex.ru

Abstract. The article is devoted to the study of ethnic structure of the population in Russia and former USSR as well as the dynamics of ethnic processes by the means of mathematical and cartographical modeling. Integrated indicators are developed to estimate ethnic diversity in Russia and former USSR (ethnic diversity index and its modification - ethnic diversity index adjusted for the ability to speak Russian), maps are created on the basis of the derived indicators, cluster analysis is produced to develop a topological classification of regions on their ethnic composition. Finally the forecast of ethnic structure of the population up to 2030 is given.

Этническая структура населения России

Этничность2 – характеристика населения, достаточно сложной поддающейся статистическому учету. Это обусловлено тем обстоятельством, что этническая (национальная) принадлежность населения3 сильно подвержена изменениям под влиянием и «давлением» внешних обстоятельств (государственной политики, общественного мнения и т.п.). Кроме того, для многих людей этничность не представляет важной характеристики их идентичности, они не задумываются о своей национальной принадлежности или им сложно идентифицировать её однозначно (прежде всего, речь идет о детях в межнациональных браках). Однако это не означает, что информация об этническом составе населения не следует собирать. Напротив, знание этнической структуры населения страны и регионов позволяет регулировать демографические и этнические процессы, предвидеть и предотвращать этнические конфликты. К примеру, уровень смертности и рождаемости может существенно отличаться в зависимости от национальной принадлежности людей. Распределение этнических групп по территории России и их пространственно-временная динамика дает возможность оценить число иммигрантов, проживающих на территории того или иного региона; их этническое разнообразие; предвидеть потенциальные точки межэтнических конфликтов.

В последнее время широко распространено мнение о росте этнического разнообразия населения России. При этом в качестве главного фактора обосновывается прирост иммигрантов в страну после распада СССР. Действительно, если по итогам переписи населения 1989 г. в СССР было выделено всего 128 национальностей, то в переписи 2002 г. только в России было выделено уже 182 национальности. Однако, если разобраться в этом глубже, оказывается, что это отражает не столько объективный процесс роста этнического разнообразия в стране, сколько «статистические манипуляции». Дело в том, что в 2002 г. были включены в отдельные этнические группы народы, численность которых мизерна: нагайбаки, кришны, сибирские татары (ранее они учитывались как татары), бессермяне (ранее учитывались как удмурты), кайтаги и кубачинцы (ранее учитывались как дагестанцы) и п.т. Согласно исследованиям этнологов переписи 2002 г. «открыли» для страны 68 полузабытых этнических групп [Степанов, Тищков, 2007]. Таким образом, число национальностей не является объективным индикатором процесса роста этнического разнообразия в России.

В этой связи, для изучения этнической композиции населения регионов России и бывшего СССР и динамики этнических процессов были избраны методы математико-картографического моделирования. Сюда входят разработка интегральных показателей для оценки этнического разнообразия в регионах России и бывшего СССР, создание показателей на основе полученных показателей, проведение кластерного анализа для формирования типологии регионов России по полиэтничности структуры населения.

1 Исследование проведено в рамках проектов РФФИ № 09-06-91270-ИННС, а и № 09-06-00426-а
2 Под термином этничность (национальность), этническая (национальная) принадлежность, а также этническая идентичность авторы статьи подразумевают одно и то же
3 В соответствии со статьей 26 Конституции РФ «Каждый вправе определять и указывать свою национальную принадлежность. Никто не может быть принужден к определению и указанию своей национальной принадлежности»
Поскольку окончательные результаты Всероссийской переписи населения, проведенной в 2010 году, пока не доступны, исследование опиралось на сведения четырех предыдущих переписей населения, проходивших в 1970, 1979, 1989 и 2002 годах. Сравнение результатов переписей показывает, что в этническом составе населения России постепенно сокращается доля славянских народов, прежде всего, русских как государственнообразующего этноса. Доля русских сократилась с 82,8% в 1970 г. до 79,8% в 2002 г. При этом растет доля тюркских и кавказских народов. Например, доля татар увеличилась с 3,7% до 3,8%, армян - с 0,2% до 0,8%, чеченцев - с 0,4% до 0,9% (между переписями 1970 и 2002 годов).

Методика оценки этнического разнообразия в регионах России

Для оценки этнического разнообразия населения регионов России нами был предложен индекс этнического разнообразия (Ethnic Diversity Index - EDI) и его модификация – индекс этнического разнообразия с учетом владения русским языком (Ethnic Diversity Index adjusted for the ability to speak Russian - EDI_R) [6]. Подобный подход был впервые предложен в 1991 г. американскими учеными Ф.Мейером и III.Макинтошем для измерения расового и этнического разнообразия в штатах США [Philip Mayer and Shawn McIntosh, 1992].

Индекс этнического разнообразия измеряет вероятность того, что два случайно выбранных в одном регионе (стране) человека имеют разную этническую принадлежность. Методика расчета данного индекса основана на двух базовых принципах теории вероятности:

- во-первых, вероятность одновременного наступления двух независимых событий равна произведению вероятностей этих событий: $P(AB) = P(A) \times P(B);$
- во-вторых, вероятность того, что произойдет хотя бы одно из двух независимых событий, равна сумме их вероятностей: $P(A+B) = P(A) + P(B).$

Основываясь на приведенных теоремах сложения и умножения независимых событий, выделим следующие этапы расчета индекса этнического разнообразия применительно к регионам России и бывшего СССР.

Первый этап - расчет доли каждой этнической группы в численности населения региона. К полученной величине необходимо относиться как к вероятности того, что один случайно выбранный из совокупности человек принадлежит к той или иной этнической группе. Второй этап - умножение каждой вероятности на саму себя (возведение в квадрат). Данная величина характеризует вероятность того, что 2 случайно выбранных человека будут той же самой этнической принадлежности. Третий этап – суммирование взвешенных в квадрат вероятностей для каждого региона и получения итоговой вероятности, что 2 случайно выбранных человека одной и той же национальности (в пределах области изучения). Последний этап – вычитание полученной величины из 1. Рассчитанный показатель – вероятность того, что 2 случайно выбранных человека являются представителями разных этнических групп. Умножение полученного индекса на 100 позволяет перейти к целому величинам для удобства их дальнейшего анализа и сравнения:

$$EDI_j = \left(1 - \sum_{i=1}^{k} P_{ij}^2 \right) \times 100,$$

где j – регион, i – этническая группа в регионе, E – общее число этнических групп в регионе.

Индекс этнического разнообразия (EDI) может изменяться от 0 (этически однообразный регион) до 100 (полное разнообразие). Значение 0 означает, что только одна этническая группа представлена в регионе, в то время как значение индекса <100> может быть интерпретировано следующим образом: 2 случайно выбранных человека имеют нулевую вероятность быть одной и той же этнической принадлежности.

Расчеты были также произведены на региональном уровне. Наиболее этнически разнообразными в 2002 г. оказались национальные образования, расположенные на Северном Кавказе, Поволжье и Сибири. Минимальное значение EDI имел в регионах с преобладанием русского населения. В таблице 1 представлены результаты расчетов Индекса для 10 наиболее и наименее этнически разнообразных регионов.

Наши расчеты позволяют отслеживать динамику изменения этнического разнообразия в регионах России. Так на рис. 1 представлены регионы, в которых наблюдался наибольший рост этнического разнообразия за период с 1970 по 2002 год. Преимущественно, это территории, принявшие значительное число мигрантов из разных регионов страны и из-за рубежа. Очевидно, что миграционные процессы и дифференциация рождаемости и смертности по этническому признаку существенно изменили этнический состав и усилили этническое разнообразие.

На основе расчетов была составлена серия оценочных карт, отражающих индекс этнического разнообразия в разрезе регионов России на основе четырех переписей населения 1970, 1979, 1989 и 2002 гг. Анализ динамики ИЭР показывает, что этническое разнообразие увеличивается в европейской части России. Напротив, население становится менее разнообразным в этническом измерении в регионах Северного Кавказа, южной половине Сибири и Дальнего Востока.
Таблица 1. Рейтинг регионов России по значениям Индекса этнического разнообразия на основе данных переписи населения 2002 г.

<table>
<thead>
<tr>
<th>Позиция в рейтинге</th>
<th>Регионы</th>
<th>Значение EDI</th>
<th>Позиция в рейтинге</th>
<th>Регионы</th>
<th>Значения EDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Республика Дагестан</td>
<td>83,8</td>
<td>80</td>
<td>Ярославская область</td>
<td>9,4</td>
</tr>
<tr>
<td>2</td>
<td>Республика Башкортостан</td>
<td>72,0</td>
<td>81</td>
<td>Тульская область</td>
<td>9,3</td>
</tr>
<tr>
<td>3</td>
<td>Карачаево-Черкесская Республика</td>
<td>71,9</td>
<td>82</td>
<td>Архангельская область</td>
<td>9,3</td>
</tr>
<tr>
<td>4</td>
<td>Чукотский АО</td>
<td>66,5</td>
<td>83</td>
<td>Орловская область</td>
<td>9,1</td>
</tr>
<tr>
<td>5</td>
<td>Корякский АО</td>
<td>66,5</td>
<td>84</td>
<td>Костромская область</td>
<td>8,6</td>
</tr>
<tr>
<td>6</td>
<td>Ямало-Ненецкий АО</td>
<td>62,9</td>
<td>85</td>
<td>Липецкая область</td>
<td>8,2</td>
</tr>
<tr>
<td>7</td>
<td>Таймырский (Долгано-Ненецкий) АО</td>
<td>62,7</td>
<td>86</td>
<td>Курская область</td>
<td>8,1</td>
</tr>
<tr>
<td>8</td>
<td>Республика Саха (Якутия)</td>
<td>62,1</td>
<td>87</td>
<td>Брянская область</td>
<td>7,2</td>
</tr>
<tr>
<td>9</td>
<td>Кабардино-Балкарская Республика</td>
<td>61,7</td>
<td>88</td>
<td>Тамбовская область</td>
<td>6,9</td>
</tr>
<tr>
<td>10</td>
<td>Республика Калмыкия</td>
<td>60,1</td>
<td>89</td>
<td>Вологодская область</td>
<td>6,7</td>
</tr>
</tbody>
</table>

Рис. 1. Максимальные значения изменения Индекса этнического разнообразия в регионах России между переписями 1970 и 2002 гг.

Кроме расчета Индекса этнического разнообразия в «чистом» виде, мы предприняли попытку включения сведений о доли людей владеющих/не владеющих русским языком как государственным. В данном случае схема расчетов выглядит следующим образом.

На первом этапе отдельно рассчитывается вероятность того, что два случайно выбранных человека говорят на русском языке. Для этого отдельно возводим в квадрат и суммируем долю лиц (выраженных в десятичных долях), владеющих и не владеющих русским языком. Второй этап - перемножаем «этническую» и «языковую» вероятности. Полученная величина характеризует вероятность того, что два случайно выбранных человека входят в одну и ту же этническую группу, и оба говорят на русском языке. На заключительном этапе вычитаем полученную величину из 1 и умножаем на 100, чтобы получить целые значения. Индекс этнического разнообразия с учетом владения русским языком (EDIₚ) описывает вероятность того, что два случайно выбранных человека имеют различную этническую принадлежность, и один говорит на русском языке, в то время как другой им не владеет.
Рис. 2. Индекс этнического разнообразия в регионах СССР (согласно расчетам по результатам Всесоюзной переписи населения 1970 г.)

Рис. 3. Индекс этнического разнообразия в регионах России (согласно расчетам по результатам Всероссийской переписи населения 2002 г.)
ГЕОИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УСТОЙЧИВОГО РАЗВИТИЯ ТЕРРИТОРИЙ И ГИС-ПРОЕКТЫ

Ethnic diversity change during the intercenss period 1970 - 2002

Рис. 4. Изменение этнического разнообразия в 1970-2002 гг.

Таблица 2. Сравнение Индекса этнического разнообразия (EDI) и Индекса этнического разнообразия с учетом владения русским языком (EDI_R) в регионах России с наибольшими различиями в рассчитанных показателях, 2002 г.

<table>
<thead>
<tr>
<th>Позиция в рейтинге</th>
<th>Регион России</th>
<th>Индекс этнического разнообразия (EDI)</th>
<th>Индекс этнического разнообразия с учетом владения русским языком (EDI_R)</th>
<th>Разница EDI_R - EDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Чеченская Республика</td>
<td>12,5</td>
<td>39,0</td>
<td>26,5</td>
</tr>
<tr>
<td>2</td>
<td>Республика Ингушетия</td>
<td>36,1</td>
<td>50,9</td>
<td>14,8</td>
</tr>
<tr>
<td>3</td>
<td>Республика Тыва</td>
<td>36,6</td>
<td>50,2</td>
<td>13,6</td>
</tr>
<tr>
<td>4</td>
<td>г. Санкт-Петербург</td>
<td>28,1</td>
<td>35,9</td>
<td>7,8</td>
</tr>
<tr>
<td>5</td>
<td>г. Москва</td>
<td>27,9</td>
<td>32,9</td>
<td>5,0</td>
</tr>
<tr>
<td>6</td>
<td>Агинский Бурятский АО</td>
<td>48,6</td>
<td>53,5</td>
<td>5,0</td>
</tr>
<tr>
<td>7</td>
<td>Ивановская область</td>
<td>12,2</td>
<td>17,1</td>
<td>4,9</td>
</tr>
<tr>
<td>8</td>
<td>Республика Саха (Якутия)</td>
<td>62,1</td>
<td>66,9</td>
<td>4,8</td>
</tr>
<tr>
<td>9</td>
<td>Московская область</td>
<td>17,1</td>
<td>21,1</td>
<td>4,0</td>
</tr>
<tr>
<td>10</td>
<td>Республика Татарстан</td>
<td>56,3</td>
<td>59,9</td>
<td>3,7</td>
</tr>
</tbody>
</table>

Типология регионов России по этнической структуре населения
Следующий этап исследования был связан с разработкой типологии регионов России по полиэтничности структуры населения, проживающего в них. Для этих целей мы использовали как ручные алгоритмы, так и автоматизированные методы создания типологических классификаций [Тикунов, 1997] для получения наилучшего результата с содержательной точки зрения. В результате, 6 кластеров было выделено (рис. 5).

Первый тип регионов – регионы с ярко выраженной однополюсной этнической структурой. В них явно доминирует один этнос, остальные этнические группы составляют небольшую долю. К их числу относятся многие русскоязычные регионы европейской России, Сибири, Поволжья. В большинстве своем это «русские» регионы: Санкт-Петербург, Псковская, Ленинградская, Вологодская, Ярославская,
Костромская, Владимирская, Курганская, Томская, Новосибирская, Кемеровская, Иркутская области и некоторые другие регионы.

Второй тип – регионы с ярко выраженной однopolюсной структурой, но с выделяющимся вторым этносом. К этим регионам относятся Москва, Московская, Тульская, Орловская, Белгородская, Костромская, Свердловская, Амурская области, Хабаровский и Приморский края, Еврейская автономная область. Третий тип – территории с выраженной однopolюсной этнической структурой, но с присутствием других народов. Основное население этих территорий составляют русские, но присутствие других народов не просто заметно, а весьма существенно. К этим территориям относятся Краснодарский и Ставропольский край, Ростовская, Архангельская, Вологградская, Оренбургская, Самарская, Тюменская и Магаданская области, Пермский и Красноярский край, Ненецкий, Ямало-Ненецкий, Ханты-Мансийский, Таймырский автономные округа.

Четвертый тип регионов – регионы с однopolюсной этнической структурой со значительной долей второго этноса (это «условно» двухполюсная структура). Например, это республики Адыгея, Калмыкия, Северная Осетия, Ингушетия, Чувашия, Мордовия, Удмуртия, Коми, Алтай, Хакасия, Тыва, Бурятия; Чукотский, Эвенкийский и Корякский автономные округа. Как правило, вторым этносом в этих регионах являются русские.

Пятый тип – регионы с «чистой» двухполюсной этнической структурой населения. Здесь проживают два примерно равных по численности этноса. В эту группу можно отнести три региона – республики Мариий Эл, Татарстан и Якутия. При этом на них в сумме приходится более 80% населения региона. Как правило, русские здесь являются второй по численности этнической группой. Шестой тип – территории с многополюсной этнической структурой населения. Здесь проживает большое число разных этнических групп. Каждый из этих народов не составляет ясного большинства. Таких территорий в России всего четыре – республики Башкортостан, Дагестан, Кабардино-Балкария и Карачаево-Черкесия.

Рис. 5. Типология регионов России по этнической структуре населения, 2002 г.

Прогноз этнического состава населения России в 2030 году

На заключительном этапе исследования нами был дан прогноз этнической структуры населения до 2030 года. Сразу следует отметить, что в связи с недостаточностью данных о половозрастных моделях рождаемости, смертности и миграции различных этнических групп, стало невозможным проведение полноценного демографического прогноза когортно-компонентным методом с привлечением дополнительного математического аппарата из теории вероятности. Связи с этим нами было сделано предположение об этнической структуре населения в 2030 года на основе динамики численности основных этнических групп населения России в межпереписные периоды. Для этого были определены

Согласно нашим расчетам, в среднесрочной перспективе доля русских в населении России будет сокращаться. К 2030 г. она может составить 78,33% населения страны (в 2002 г. - 78,83%). Вторым этносом в России останутся татары. Их доля несколько увеличится, но рост будет незначительным – с 3,83% (2002 г.) до 3,92% (2030 г.). Будет сокращаться доля таких народов как украинцы (с 2,03% в 2002 г. до 1,81% в 2030 г.) и чуваши (с 1,13% в 2002 г. до 1,07% в 2030 г.). Очевидно, увеличится доля башкир (с 1,15% в 2002 г. до 1,32% в 2030 г.), чеченцев (с 0,94% в 2002 г. до 1,36% в 2030 г.), армян (с 0,78% в 2002 г. до 1,46% в 2030 г.). Доля прочих народов в России в течение прогнозируемого периода также будет расти с 10,32% (2002 г.) до 11,75% (2030 г.).

Рис. 6. Прогноз этнической структуры населения России на 2030 г., %

Литература

Abstract. The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.

The short review of cloud technology is done. The analysis of technology possibilities in modern geoinformation toolkit context is given. The necessity of geoinformation toolkit development is shown.
ГЕОИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УСТОЙЧИВОГО РАЗВИТИЯ ТЕРРИТОРИЙ И ГИС-ПРОЕКТЫ

мощностей, которые могут привлекаться для обработки пространственных данных. Преимущества облачных решений в гибкости и скорости становятся менее очевидными.

![Diagram](image)

Рис. 1. Структура ИПД «этно»

Анализ успешных примеров создания и развития зарубежных ИПД свидетельствует, что все они основываются на технологических решениях, разрабатываемых наукой в лице ведущих университетов как средоточия фундаментальной науки... В России пока не видно заинтересованности «стратегов» РИПД (Российская ИПД) в активном привлечении науки к ее устройству [Кошкарев, 2008]. Этот вывод справедлив и к внедрению облачных технологий. Такая ситуация ведёт к отставанию в этой сфере.

Сегодня существует тренд смещения в сторону облачных вычислений. Небольшие картографические компании имеют возможность получения доступа к мощным и дорогим пакетам обработки пространственных данных, вычислительным мощностям и их инфраструктуре, за сумму меньше той, которую им бы пришлось потратить на покупку всего необходимого оборудования и программ. Крупные картографические компании, которые уже обладают необходимым оборудованием и обеспечением с использованием облачных технологий могут предоставить более быстрый доступ к своим геосервисам. Существующий курс на инновационные технологии, одним из которых являются облачные вычисления, необходимо поддерживать. Задержка в решении этих проблем сегодня может обернуться крупными затратами в будущем, когда технологии представления облачных геосервисов в западных странах окончательно сформируются.

ЛИТЕРАТУРА

NEW WAYS OF CARTOGRAPHICAL DISPLAY OF CHRONOLOGY OF MOVEMENT

Ilsaaev I.A.
M.V.Lomonosov Moscow State University
Moscow, Russia
E-mail: ilia_isaev@bk.ru

Abstract. The ways of demonstration of dynamics and chronology of movement in the cartography are considered. The different kinds of coloured scales for lines of movement are presented. The map of Magellan's expedition of 1519–1522 is produced as an illustration.

Often the means of visualization involve the requirements of adequacy of a visual image. For example, the point of time of occurrence of an event is not supposed to be marked always and everywhere by some type of symbol. In many cases it is sufficient of information to show just the occurrence of the event without drawing a figure or symbol of event.

The visual means of demonstration of the scale of movement, however, are shown in the cartography. The dynamic and the chronology are connected with the movement of the bodies observed. One of the ways of cartographic visualization is the usage of the colour schemes of the lines of movement. These schemes are divided into different types: from the lines of movement with contrasted colour schemes, from the lines of movement with the same colour, where the lines are distinguished by the lengths (from the shortest to the longest) or by the boldness (from the thinnest to the thickest) of the lines. The colour schemes of the lines of movement are divided into different types: from the lines with the same colour, from the lines of movement with contrasted colour schemes.

The usage of the scales of the movement with the contrasted colour schemes allows to demonstrate the velocity of the movement. The time, the distance, the speed and the other characteristics are connected with the colour schemes of the lines of movement. The usage of the scales of the movement with the same colour allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the boldness allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the lengths allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the thickness allows to demonstrate the velocity of the movement and the way of the movement.

The usage of the scales of the movement with the contrasted colour schemes allows to demonstrate the velocity of the movement. The time, the distance, the speed and the other characteristics are connected with the colour schemes of the lines of movement. The usage of the scales of the movement with the same colour allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the boldness allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the lengths allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the thickness allows to demonstrate the velocity of the movement and the way of the movement.

The usage of the scales of the movement with the contrasted colour schemes allows to demonstrate the velocity of the movement. The time, the distance, the speed and the other characteristics are connected with the colour schemes of the lines of movement. The usage of the scales of the movement with the same colour allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the boldness allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the lengths allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the thickness allows to demonstrate the velocity of the movement and the way of the movement.

The usage of the scales of the movement with the contrasted colour schemes allows to demonstrate the velocity of the movement. The time, the distance, the speed and the other characteristics are connected with the colour schemes of the lines of movement. The usage of the scales of the movement with the same colour allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the boldness allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the lengths allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the thickness allows to demonstrate the velocity of the movement and the way of the movement.

The usage of the scales of the movement with the contrasted colour schemes allows to demonstrate the velocity of the movement. The time, the distance, the speed and the other characteristics are connected with the colour schemes of the lines of movement. The usage of the scales of the movement with the same colour allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the boldness allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the lengths allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the thickness allows to demonstrate the velocity of the movement and the way of the movement.

The usage of the scales of the movement with the contrasted colour schemes allows to demonstrate the velocity of the movement. The time, the distance, the speed and the other characteristics are connected with the colour schemes of the lines of movement. The usage of the scales of the movement with the same colour allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the boldness allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the lengths allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the thickness allows to demonstrate the velocity of the movement and the way of the movement.

The usage of the scales of the movement with the contrasted colour schemes allows to demonstrate the velocity of the movement. The time, the distance, the speed and the other characteristics are connected with the colour schemes of the lines of movement. The usage of the scales of the movement with the same colour allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the boldness allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the lengths allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the thickness allows to demonstrate the velocity of the movement and the way of the movement.

The usage of the scales of the movement with the contrasted colour schemes allows to demonstrate the velocity of the movement. The time, the distance, the speed and the other characteristics are connected with the colour schemes of the lines of movement. The usage of the scales of the movement with the same colour allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the boldness allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the lengths allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the thickness allows to demonstrate the velocity of the movement and the way of the movement.

The usage of the scales of the movement with the contrasted colour schemes allows to demonstrate the velocity of the movement. The time, the distance, the speed and the other characteristics are connected with the colour schemes of the lines of movement. The usage of the scales of the movement with the same colour allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the boldness allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the lengths allows to demonstrate the velocity of the movement and the way of the movement. The usage of the scales of the movement with the thickness allows to demonstrate the velocity of the movement and the way of the movement.
Рис. 1. Градиентные шкалы заливок линий движения

Рис. 2. Ступенчатые шкалы заливок линий движения

Рис. 3. Способы отражения хронологии маршрутов

Рис. 4. Фрагмент цветовой шкалы датировки маршрута экспедиции

Элементы обозначения маршрута (точки, пунктирные штрихи) можно также показывать разным цветом, в соответствии с хронологией. Это особенно важно в том случае, если по пути следования были длительные остановки. В таком показе есть преимущество наглядного выделения этапов движения, которые
вследствие больших перерывов должны быть обозначены хорошо отличающимися оттенками цвета или тона (светлоты) заливки. Помимо этого при помощи хронологической шкалы можно определить примерную дату нахождения участников движения в той или иной точке. Фрагмент подобной шкалы представлен на рис. 4.

Подобная шкала использовалась при составлении карты маршрута кругосветной экспедиции Магеллана (рис. 5). В новой шкале для обозначения мест длительных остановок или зимовок применялись объемные знаки – шары, визуально воспринимаемый объем которых пропорционален времени стоянок. Предложенная карта обладает целым рядом достоинств. Например, она наглядно показывает скорость прохождения отдельных участков пути, время стоянок и даже соотношение времени стоянок со временем движения. Кроме того, по представленной хронологической линии можно соотнести время нахождения мореплавателей в той или иной точке или регионе с общей продолжительностью экспедиции. Например, по карте сразу видно, что половина всего времени экспедиции затрачено на достижение Филиппинского архипелага и примерно четверть времени экспедиция провела только лишь у побережий Южной Америки, преимущественно в высоких широтах.

Рис. 5. Фрагмент карты кругосветной экспедиции Магеллана, выполненной по новой методике

Можно подвести итог, что выполненные по предложенной методике карты наглядно демонстрируют новые возможности картографического метода исследования. Применение их помогает более глубокому осмыслению заложенной в карте информации и повышает качество её визуализации.
Abstract. 300th anniversary of the founder of the Moscow State University, Michael V. Lomonosov, celebrated in November 2011, became the impetus for increasing research of his heritage, including the studying of the homeland of the great scientist - Kholmogory district in Arkhangelsk region.

One of the main fields in research of Lomonosov's heritage is studying of cultural and historical features of Kholmogory, including toponymic landscape as union of geographic names of the territory.

Mapping of toponymic features of the territory enables carrying out of space-time analysis of a toponymic landscape and searching links between place-features and other cultural, historical and socio-economic characteristics of the territory.

The paper is devoted to our attempt of creating of the toponymic map of Kholmogory. For this purpose a series of maps, dated XIII-XX centuries, articles, books and papers have been analyzed. Totally we’ve researched 143 toponyms and organized them into 12 groups – according to their time of appearance on the maps and their origin. This classification became the basis of the matrix legend of created toponymic map.

Established map, as well as other cartographic materials, obtained in the process of mapping, can be used in cultural heritage conservation and education.

На основе изучения разновременных картографических и литературных данных, а также материалов полевых исследований систематизирована и структурирована информация о топонимах Холмогорского района Архангельской области (143 объекта). Разработана классификация топонимов исследуемого района в соответствии со временем появления на различных картографических произведениях (картах, планах, чертежах) и типом номинации (всего 12 групп), явившаяся основой матричной легенды. Представлена методика и результаты составления топонимической карты Холмогорья.

Введение
Данные о топонимическом ландшафте как «одновременной совокупности географических названий определенной территории» [Вольский, Романова, 2001] являются важной составляющей комплексной историко-культурной и географической характеристики местности.

Топонимическая система территории может отражать как различные свойства природного или культурного ландшафта, так и локальные и региональные историко-культурные характеристики: ареалы и типы расселения этносов и этнических групп, структуру промыслов, характер и историю природопользования и др.

Важное место в топонимике занимают попытки классифицировать географические названия. Выделяются две группы классификаций топонимов: первая основана на языковедческом элементе топонимики (классификации по различным частям топонима-слова); вторая – историко-географическая – включает в свой состав классификации по объектам номинации, источникам происхождения [Вольский, Романова, 2001].

Особый интерес представляет одна из первых в нашей стране классификаций, разработанная В.П. Семеновым-Тян-Шанским (1926). В ней по фактору происхождения выделено 7 групп топонимов:
1) от языковых имен собственных и прозвищ;
2) от языковых имен собственных;
3) от исторических имен;
4) от языка культа;
5) от древних племен, абхорских или колонизаторов данной территории;
6) от современных наименований в честь различных событий и лиц;
7) от предметов, составляющих типичный географический пейзаж данной территории.
Похожую классификацию построил А.М. Селищев в 1939 г. Наиболее простой является классификация по объектам номинации, хотя она имеет один существенный недостаток – довольно часто возникают ситуации, когда топоним принадлежит одновременно к нескольким различным группам [Вольский, Романова, 2007].

В данной работе предложена попытка создания топонимической карты на территорию Холмогорского района Архангельской области. Для достижения этой цели последовательно решались следующие задачи:

- сбор материалов по топонимике исследуемого района;
- разработка типологии топонимов исследуемой территории для структурирования собранных данных;
- разработка легенды топонимической карты Холмогорья;
- составление и оформление топонимической карты Холмогорья.

Материалы и методы

В процессе исследования было изучено 143 объекта, которые были классифицированы в группы в соответствии с периодом появления на картах и типом номинации (всего 12 групп).

По времени появления выделены три группы топонимов:

- сохранившиеся с XVIII в. (48 объектов, типизированы по двум картографическим источникам);
- известные с XIX в. (32 объекта, типизированы по 7 картам, схемам и чертежам);
- появившиеся на картах XX в. (63 объекта, типизированы по 4 источникам).

Информационной основой типологии топонимов по временным срезам явились следующие картографические материалы: «План мест, прилежащих к Куростровской волости, где родился г. Ломоносов» И.Лепехина, 1788 г. (перевод топонимов на современный русский язык выполнен В.Н. Калукцовым); «План мест, прилежащих к Куростровской волости, где родился г. Ломоносов», приложенный к книге «Путешествие академика Ивана Лепехина», составленный в 1780 г. С. Т. Негодевым; схемы и чертежи 19 в., выполненные А. Грандилиевским (2009); «Карта Холмогорского уезда» под редакцией Василия Иванова (XIX в.), топографические карты и планы XX в. (Q-37, 143,144 «Холмогоры» 1:100 000, ГУГК, 1987, Роскартография, 2007, кадастровые планы Холмогорского и Матигорского муниципальных образований).

По типу номинации все топонимы разделили на следующие категории:

- палеотопоны, фиксирующие исчезнувшие природные или культурные ландшафты. К данной группе нами отнесены 62 объекта. Наиболее яркими примерами могут являться д. Бор – сведенный сосновый бор; о. Вашкарэнда – исчезнувший фино-угорский культурный ландшафт;
- ландшафтные, отражающие ландшафтные особенности вре времени (12 объектов). В качестве примеров можно привести оз. Долгое (название фиксирует продолжительное водоема), о. Средний Песок (название связано с тем, что в нем образовывался в результате этого озера);
- пространственно-ориентированные, представляющие собой название объектов, находящихся в пространственных отношениях с другими, главными по отношению к ним объектами – центрами номинации (16 топонимов): Подгорье, Залесье, Надручей, Зауречен и др.;
- именные, связанные с определенным антропогенным ландшафтом (53 объекта). В отличие от крепостной Центральной России, где именные топонимы отражали в основном отношение к тому или иному поместью, названия деревень и природных объектов Русского Севера фиксировали фамилии тех семей, которые вели хозяйственную деятельность на этой территории. Например, оз. Шубновское (топоним определял территорию, где вели свое хозяйство крестьяне семьи Шубных), деревни Кузнецово, Кичерино и др. Также к этой группе отнесены топонимы-памятники, ярким примером которых является название родной деревни М.В. Ломоносова Денисовки, которая в XIX в. была переименована в «Ломоносово».

Результаты

Основным результатом работы явилась топонимическая карта на часть территории Холмогорского района Архангельской области (рис. 1).

Карта составлена в масштабе 1: 100 000 в поперечно-цилиндрической проекции Гаусса-Крюгера (7 зона), в системе координат СК-42. Карта позволяет просматривать поверхность на территории Холмогорского района, а также кадастровых планетах Холмогорского, Матигорского и Ломоносовского муниципальных образований.

Рис. 1. Топонимическая карта Холмогорья (уменьшена до масштаба 1 : 200 000)

Рис. 2. Матричная легенда топонимической карты Холмогорья

Тип номинации отмечен цветом (пaleотопонимы – красный, ландшафтные – зеленый, пространственно-ориентированные – синий, именные – черный), время появления топонима – различными
шрифтами (XIII в. – древнеславянский шрифт, XIX в. – рукописный шрифт с декоративными элементами, XX в. – простой шрифт без засечек).

Основная работа по наполнению базы данных и составлению карты велась в ГИС-пакете ArcGIS 10 Яблоковым В.М. Карта оформлена в графическом пакете Adobe Illustrator в стиле карт XIX в.

Карта дополнена двумя дополнительными картами-врезками, дающими представление о теории номинации центральных островов [Новиков, 2009] и древних топонимах исследуемого района.

На карте-врезке «Порядковая номинация центральных островов Северо-Двинской дельты (по Новикову, 2009)» (рис. 3) центральным является о. Куростров, первым – о. Ухтостров, вторым – о. Какси-остров (сейчас это группа островов, разделенных протоками), третьим – о. Хольмостров (в настоящее время не существует из-за обмеления протоки, ранее разделявшей берег и остров) и четвертым – о. Нальеостров.

![Рис. 3. Порядковая номинация центральных островов Северо-Двинской дельты [по Новикову, 2009]](image)

На второй врезке «Самые древние топонимы Холмогорья, упоминаемые в русских летописях» (рис. 4) представлены следующие топонимы: XIII век - Матигоры, XIV-XV век - Колмогоры (с XVIII - Холмогоры), Чухчелема (совр. - Чухченема), Ухтостров, Ровдина Гора, Нальеостров.

![Рис. 4. Самые древние топонимы Холмогорья, упоминаемые в русских летописях [по Морозову, 1975]](image)
Следует отметить, что для всех исследованных топонимов матрица «время появления топонима – тип номинации» заполнена полностью. Этот факт подтверждает дифференциацию природных и культурных ландшафтов исследуемого района по типу номинации на всех рассмотренных временных срезах (рис. 5).

Созданная топонимическая карта позволит расширить границы знаний о родине нашего великого соотечественника, а культурно-ландшафтный подход расставит другие акценты при её изучении. В рамках такого подхода не точка, а территория, ландшафт в целом являются родной человека. Та территория, на которой он живёт повседневной жизнью, участвует в хозяйственной деятельности.

Рис. 5. Количественное распределение типов номинаций топонимов Холмогорья по временным срезам

Рис. 6. «План мест, прилежащих к Куростровской волости, где родился г. Ломоносов» И. Лепехина (1788 г.), адаптированный Яблоковым В. М.
Таким образом, можно говорить о культурном ландшафте родины Ломоносова, который во многом сформировал основные черты характера этой масштабной личности.

Особую ценность картографирование нематериального культурно-исторического наследия Холмогорского района представляет в связи с 300-летним юбилеем основателя Московского государственного университета, великого российского ученого М.В.Ломоносова, отмечаемым в 2011 г.

Выполненняя работа является одним из этапов пространственно-географического изучения наследия М.В. Ломоносова, в частности родины великого ученого – ландшафтов, топонимии и культурного наследия Холмогорья.

ЛИТЕРАТУРА

К ВОПРОСУ КОМПЬЮТЕРИЗАЦИИ СОЗДАНИЯ ТЕМАТИЧЕСКИХ КАРТ

Дышлюк С.С., Павлов Е.В.
Сибирская государственная геодезическая академия
Новосибирск, Россия
E-mail: ss9573@yandex.ru

GIS CREATING THEMATIC MAPS

Dyshluk S.S., Pavlov E.V.
Siberian State Academy of Geodesy
Novosibirsk, Russia
E-mail: ss9573@yandex.ru

Abstract. Interaction of GIS technologies and cartography in the form of geo-mapping opens up new possibilities for cartography and changes its perspectives. The development of operative map making, animations in cartography are the results of interaction mentioned above. This article touches the changes in such areas map creation and map editing. How all the stages of map creation and editing are transformed with GIS and how they become more accessible for common users.

Одной из важнейших проблем современного этапа информатизации общества и экономики является существенное повышение уровня и объемов использования информационных технологий. В частности, остро стоит проблема расширения сферы применения ГИС и ГИС – технологий в органах власти, территориального управления, отраслях, осуществляющих свою деятельность в окружающем пространстве. В большинстве созданных за рубежом и в России ГИС реализованы только справочно-картографические функции (70% всех ГИС).

Взаимодействие геоинформатики и картографии стало основой для формирования нового направления - геоинформационного картографирования, суть которого составляет автоматизированное информационно-картографическое моделирование природных и социально-экономических геосистем на основе ГИС и баз знаний. В обозримом будущем перспективы развития картографии в науках о Земле связываются прежде всего и почти целиком с геоинформационным картографированием.
ГЕОИНФОРМАЦИОНАНОЕ ОБЕСПЕЧЕНИЕ УСТОЙЧИВОГО РАЗВИТИЯ ТЕРИТОРИИ И ГИС-ПРОЕКТЫ

Это обусловлено возрастающими требованиями к эффективности управления инфраструктурой территорий, финансовой и хозяйственной деятельностью предприятий, инженерными сетями и коммуникациями, предполагающими непрерывное совершенствование систем информационного обеспечения. Поэтому только информационные системы, в которых используется грамотно построенная географическая информационная система (ГИС), призванная предоставлять достоверную информацию о пространственном положении объектов и их состояниях, способны эффективно справиться с поставленной задачей.

Длительное время картографические данные служили основным источником данных для пространственных баз данных и в том числе для геоинформационных систем.

Кarta как информационный носитель выполняет две функции:
- позиционную (дает информацию о точном расположении объекта, о его размерах);
- атрибутивную (информирует о типе, виде, классе объекта, показывает топологические свойства объектов, их отношениям и т.п.).

Общегеографические карты используют в качестве источников при составлении любых тематических карт. Они служат основой для нанесения тематического содержания. Топографические, обзорно-топографические и обзорные карты - это надежные и достоверные источники, которые создают по государственным инструкциям, в стандарте системе условных знаков с определенными, строго фиксированными требованиями к точности.

Взаимодействие геоинформатики и картографии стало основой для формирования нового направления - геоинформационного картографирования, суть которого составляет автоматизированное информационно-картографическое моделирование природных и социально-экономических геосистем на основе ГИС и баз знаний.

Традиционная картография испытывает сегодня перестройку, сопоставимую, возможно, лишь с теми изменениями, которые сопровождали переход от рукописных карт к печатным полиграфическим оттискам. В некоторых случаях геоинформационное картографирование почти полностью заменило традиционные методы картосоставления и картографирования.

Четкая целевая установка и преимущественно прикладной характер - вот, пожалуй, наиболее важные отличительные черты геоинформационного картографирования. Согласно подсчетам, до 80% карт, составляемых с помощью ГИС, носят оценочный или прогнозный характер либо отражают то или иное целевое районирование территории.

Программно-управляемое картографирование по новому освещает многие традиционные проблемы, связанные с выбором математической основы и компоновки карт (возможность перехода от проекции к проекциям, свободное масштабирование, отсутствие фиксированной нарезки листов), введением новых изобразительных средств (например, мигающих или перемещающихся на карте знаки), генерализацией (использование фильтрации, слаживания и т.п.).

Происходит тесное соединение двух основных ветвей картографии: создания и использования карт. Многие трудоемкие прежде операции, связанные с подсчетом длин и площадей, преобразованием изображений или их совмещением, стали рутинными процедурами. Возникла электронная динамическая картометрия. Создание и использование карт, в особенности если речь идет о цифровых моделях, стали как бы единым интегрированным процессом, поскольку в ходе компьютерного анализа происходит постоянное взаимное трансформирование изображений. Даже чисто методически стало трудно различить, где завершается составление исходной карты и начинается построение производной.

ГИС-технологии породили еще одно направление - оперативное картографирование, то есть создание и использование карт в реальном или близком к реальному масштабе времени для быстрого, а точнее сказать, своевременного информирования пользователей и воздействия на ход процесса. При этом реальный масштаб времени понимается как характеристика скорости создания-использования карт, то есть темпа, обеспечивающего немедленную обработку поступающей информации, ее картографическую визуализацию для оценки, мониторинга, управления, контроля процессов и явлений, изменяющихся в том же темпе.

Оперативные карты предназначены для инвентаризации объектов, предупреждения (сигнализации) о неблагоприятных или опасных процессах, слежения за их развитием, составления рекомендаций и прогнозов, выбора вариантов контроля, стабилизации или изменения хода процесса в самых разных сферах - от экологических ситуаций до политических событий. Исходными данными для оперативного картографирования служат материалы аэрокосмических съемок, непосредственных наблюдений и замеров, статистические данные, результаты опросов, переписей, референдумов, кадастровой информации.

Огромные возможности и порой неожиданные эффекты дают картографические анимации. Разнообразные модули анимационных программ обеспечивают перемещение картографического изображения по экрану, мультипликационную смену карт-кадров или трехмерных диаграм, изменение скорости демонстрации, возврат к избранному фрагменту карты, перемещение отдельных элементов содержания (объектов, знаков) по карте, их мигание и вибрацию окраски, изменение фона и освещенности карты, подсвечивание и затенение отдельных фрагментов изображения и т.п. Совершенно необычны для картографии эффекты панорамирования, изменения перспективы, масштабирование частей изображения (наплывы и удаления объектов), а также иллюзии движения над картой (облет территории), в том числе с разной скоростью.
В обозримом будущем перспективы развития картографии в науках о Земле связаны прежде всего и почти целиком с геоинформационным картографированием. Они исключают необходимость готовить печатные тиражи карт. Внедрение электронных технологий "означает конец трехсотлетнего периода картографического черчения и издания печатной картографической продукции". Взамен мелкомасштабных карт и атласов пользователь сможет затребовать и сразу получить все необходимые данные в машиночитаемом или визуализированном виде, и даже само понятие "атлас" подлежит пересмотру.

Возрастающие требования к эффективности управления инфраструктурой территорий, финансовой и хозяйственной деятельностью предприятий, инженерными сетями и коммуникациями предполагают непрерывное совершенствование систем информационного обеспечения. Предпосылкой к этому является возросший уровень вычислительной техники и информационных технологий. Новое качество систем управления может быть достигнуто за счет внедрения средств мониторинга, способных обеспечить мгновенное реагирование на изменение ситуации. Новые системы смогут не только предупреждать о возможных последствиях, но и давать рекомендации по преодолению кризиса и нормализации обстановки.

Практика показывает, что только информационные системы, в которых используется грамотно построенная географическая информационная система (ГИС), призванная предоставлять достоверную информацию о пространственном положении объектов и их состоянии, способны эффективно справиться с поставленной задачей.

В настоящее время, с учетом повсеместного использования компьютерной техники и ГИС-технологий, формализация процессов создания карт является одной из актуальных задач картографии. Как отмечает ряд авторов [Берлянт, 2005; Капраев и др., 2005], внедрение формальных процедур в картографические работы позволяет автоматизировать выполнение наиболее рутинных и трудоемких этапов создания карты, благодаря чему высвобождается время для экспериментов и творчества в области картографического моделирования и оформления карт.

Формализация в общем случае понимается как представление какой-либо содержательной области (рассуждений, доказательств, процедур классификации, поиска информации научных теорий) в виде формальной системы, или исчисления (Большой словарь иностранных слов). Формализация процесса создания тематических карт в ГИС-среде предполагает, прежде всего, четкое пошаговое описание этого процесса, опирающееся на ряд принципов, которые определяют характеристики картографируемых показателей и методику составления цифровых карт:

1) Сложный и многогранный процесс создания тематических карт сводится к решению в ГИС ряда типовых задач. Формулировка задач максимально проста и понятна пользователю, и требует от него лишь выбора показателей картографирования, которые будут использоваться на создаваемой карте. Далее построение карты происходит в автоматическом режиме. Данный принцип значительно упрощает использование ГИС широкими слоями образованного населения, привыкшего работать с готовыми картами, но не имеющего опыта в их составлении.

2) При решении конкретной типовой задачи используются показатели, официально утвержденные и принятые Федеральной службой государственной статистики при ведении Российской государственной статистики. Данный принцип обеспечивает интегрированную основу процесса составления карт, как работникам административных органов, так и специалистам научно-исследовательских учреждений разного рода, поскольку им приходится иметь дело с привычным понятным аппаратом и терминологией.

3) Для картографической реализации типовых задач, решаемых в ГИС целесообразно применять способы картографического отображения, выбранные с учетом характера распространения картографируемых объектов (явленных) и специфики их отображаемых показателей. В частности:

• способ картограммы – используется для показа относительных статистических показателей по единицам административно-территориального деления;
• способ картодиаграммы – используется для изображения абсолютных статистических показателей по единицам административно-территориального деления с помощью диаграммных знаков;
• способ изолиний – применяется для изображения непрерывных, плавно изменяющихся явлений, образующих физические поля;
• способ линейных знаков – используется для изображения реальных или абстрактных объектов, локализованных на линиях;
• способ значков – применяется для показа объектов, локализованных в пунктах и обычно не выражающихся в масштабе карты;
• способ ареалов – состоит в выделении на карте области распространения какого-либо сплошного или рассеянного явления.

Данный принцип обеспечивает наглядность и высокую информационную емкость создаваемых карт.

4) Технологическая последовательность решения типовой задачи предусматривает возможность размещения полученной карты в сети Интернет. Данный принцип обеспечивает как легкость публикации созданных карт, так и упрощает обмен картографической информацией с другими пользователями ГИС.
В настоящее время все более широкое признание получает тот факт, что формализация основных процессов создания тематических карт в среде ГИС позволяет автоматизировать наиболее трудоемкие и рутинные работы, благодаря чему у создателей карт высвобождается время для экспериментов и творчества в области картографического моделирования и оформления карт [3,4]. Формализации достаточно хорошо поддаются такие процессы, как выбор математической основы и компоновки карты; расчет картографируемых показателей по формулам (причем в ГИС существует возможность перебрать разные варианты расчетных формул и остановиться на той, которая, на взгляд составителя карты, наиболее полно передает суть картографируемого явления или процесса); выбор способа картографического отображения; расчет размера условных знаков, интервала шкалы или «шага» изоляний. Соответственно, исследователь получает возможность уделять больше времени таким процессам, как корректура тематического содержания карты, проектированию элементов оформления, снижению себестоимости работ по тиражированию карты.

Принципиальная последовательность формализованного создания карт в ГИС включает в себя 4 основных этапа, соответственно пользователю в ходе работы с ГИС предстоит 4 раза осуществить выбор, обусловленный характером поставленной перед ним научной или практической задачи и особенностями темы создаваемой им карты.

На первом этапе для формирования у пользователей ГИС полноценного и всестороннего представления об экономической структуре данного региона, информационное обеспечение должно включать в себя статистические данные, на базе которых в ГИС предлагается информационные блоки:

- социальный (включает в себя информацию о населении, труде и занятости, уровне жизни, образовании, здравоохранении, правонарушениях);
- экономический (содержит сведения о промышленном производстве, сельском хозяйстве, транспорте и связи, торговле и услугах населению, финансах, внешнеэкономической деятельности);
- природный (данные о природных ресурсах и экологической обстановке).

Названия блоков совпадают с терминологией, общепринятой в России для совокупного наименования основных сфер жизнедеятельности человеческого общества. Благодаря этому, у пользователя нет возникнуть затруднений с четким отнесением поставленной перед ним задачи к тому или иному информационному блоку.

На втором этапе пользователь осуществляет выбор типа создаваемой карты, исходя из особенностей задачи, которую ему предстоит решить. С учетом результатов анализа наиболее типичных запросов, задаваемых пользователями ГИС, предлагается следующий перечень типичных задач, решаемых пользователем и поддающихся формализации: определение плотности или распространения каких-либо объектов или явлений на данной территории, определение удельного веса каких-либо объектов или явлений, отображение структуры какого-либо объекта или явления, отображение динамики какого-либо объекта или явления.

На третьем этапе пользователю необходимо выбрать тип локализации исходных данных. ГИС предусматривает следующие варианты пространственной привязки данных:

- локализация данных по административным центрам (например, естественный прирост населения);
- локализация данных по административным районам (например, густота автомобильных дорог с твердым покрытием по районам данного региона);
- локализация данных по области в целом (например - показатели внешнеэкономической деятельности данного региона).

ГИС должна быть наполнена подробной и современной информацией о природных, социальных и экономических явлениях и объектах, имеющих различную пространственную локализацию (по административным центрам, по административным районам и по региону в целом). Только наличие в базе различных вариантов пространственной привязки данных обеспечит пользователю достаточную свободу в выборе типа локализации исходной информации. Во-вторых, сам пользователь должен четко представлять себе сущность, и особенности пространственного размещения картографируемых объектов или явлений, в противном случае он не сможет правильно определиться с территориальным охватом и масштабом создаваемой карты.

На четвертом этапе пользователю предстоит выбрать способ представления созданной им карты. В зависимости от требований самого пользователя и от особенностей технического оснащения рабочего места, где установлена ГИС, - предлагаются следующие варианты:

- представление конечного результата в виде цифровой или электронной карты, которая может быть визуализирована на мониторе компьютера, или сохранена на автономный носитель (CD-или DVD-диск, флеш-память, переносной жесткий диск и т. п.);
- печать созданной карты на бумаге. В зависимости от размеров созданной карты и требуемого количества экземпляров, печать может осуществляться на цветном принтере, на плоттере или с применением иного полиграфического оборудования;
публикация созданной карты в сети Интернет. При выборе пользователем этого варианта представления результатов, созданная карта будет автоматически переконвертирована в ГИС-приложение. Полученная копия карты в векторном формате данных будет позволять добавлять на нее новую информацию и редактировать уже отображенные данные.

Литература

Подготовка глобальной модели рельефа GTOPO30 для построения границ водосборов в условиях низменного рельефа

Мальцев К. А., Ермолаев О. П.
Казанский Федеральный Университет,
Казань, Россия
E-mail: mlcvkirill@rambler.ru, oleg.Yermolaev@ksu.ru

ПРЕПАРАТИО КОЛОНДАЛЬНОЙ МОДЕЛИ РЕЛЬЕФА GTOPO30 ДЛЯ ПОСТРОЕНИЯ ГРАНИЦ ВОДОСБОРОВ В УСЛОВИЯХ НИЗМЕННОГО РЕЛЬЕФА

K.A.Maltsev, O.P.Ermolaev
Kazan Federal University
Kazan, Russia
E-mail: mlcvkirill@rambler.ru, oleg.Yermolaev@ksu.ru

Abstract. The article describe method of preprocessing DEM for deriving catchment boundaries necessary in modeling some environmental process. One of the main problem in preprocessing of DEM is removal actual topographic depression with artificial depression. But there are approaches for distinguishing actual and artificial depressions. One of the method of recognizing real and artificial depression is suggested in this article.

В статье изложена методика подготовки цифровых матриц высот для задачи построения границ водосбора гидрологического поста в автоматическом режиме. Одной из главных проблем в процессе подготовки таких моделей является удаление реально существующих депрессий на модели рельефа вместе с артефактами в процессе тотального удаления таких форм рельефа с его модели. Методика, предлагаемая в статье, осуществляет один из возможных подходов для идентификации реально существующих и артефактных депрессий.

Корректное построение границ бассейнов является одной из самых важных задач для количественной оценки процессов в окружающей среде вообще и при оценке стока взвешенных наносов в частности.

36
В тоже время, выше упомянутый подход тотального удаления локальных западин, который отлично себя зарекомендовал себя на территории ЕТР, дает большие ошибки при определении водосборных площадей в условиях пластовых равин Западной Сибири. При попытке применения данной методики для территории Западной Сибири ошибки в среднем составляли 45%, тогда как максимальные ошибки превышали 100 %. Причем данная ошибка была всегда положительной. То есть площадь, определяемая в автоматическом режиме нами, была всегда больше, чем площадь приведенная в «Государственном водном кадастре». Нами было выдвинуто предположение, что значительное увеличение площади происходит за счет огромного количества бессточных областей на территории Западной Сибири, расположенных внутри речного бассейна, но не входящих в его водосборную площадь. На наш взгляд, такие площади необходимо исключить из общей водосборной площади, при проведении анализа стока извенных наносов, так как взвешенные наносы перемещаемые водой с данных замкнутых водосборов никогда не попадут в русло реки, на которой расположен гидрогеологический пояс, а останутся внутри этих водосборов.

То есть необходимо решить задачу идентификации части западин на модели рельефа GTOPO30, которые на наш взгляд являются ловушками наносов, и не удалять их с модели. Данная задача идентификации западин являющихся ловушками взвешенных наносов близка к задаче идентификации западин реально присутствующих в модели рельефа и являющихся артефактами.

Выяснить какие западины являются действительно понижениями рельефа, а какие являются артефактами можно несколькими способами. Достаточно хороший обзор данного вопроса дан в статье [John and Creed 2006]. Согласно этой статье существует несколько различных подходов по определению реально существующих депрессий и их артефактов: 1.Согласование модели рельефа с местностью; 2. Согласование модели рельефа с имеющимися в наличии топографическими картами; 3. Использование методов классификации; 4. Подход основанный на экспертном мнении и эвристических правилах 5. Подходы использующие моделирование.

Нами для идентификации реально присутствующих в моделях локальных западин, которые являются в тоже время бессточными областями, использовался метод, который можно отнести ко второй группе из выше перечисленных. Нами для коррекции исходной цифровой модели GTOPO30 была использована дополнительная информация.

В качестве подобной информации была использована электронная векторная карта водоемов разработанная предприятием РосГИСцентр Федерального агентства геодезии и картографии России (Роскартография). Имея в своем распоряжении электронную векторную карту водоемов мы значительно облегчаем задачу построения границ водосборов с учетом бессточных областей, однако задача не становится тривиальной поскольку и здесь существует ряд трудностей, которые требуют решения. Один из главных трудностей заключается в том, что довольно много водоемов располагается на пути распространения водотоков. Если пользоваться предположением, что все водоемы являются бессточной емкостью, то мы снова получим ошибки, так как понятно, что далеко не каждый водоем является бессточной емкостью. В качестве условного критерия бессточности водоема, с точки зрения поверхностного стока, на наш взгляд может выступать отсутствие связи водоема постоянным водотоком с руслом реки, на котором установлен гидрологический пост.

На первом этапе реализации методики отбора водоемов происходит растеризация электронных векторных карт водоемов. Поскольку модель рельефа GTOPO30 представлена именно в растровом виде, а также алгоритмы, которые мы используем, разработаны для растровой модели данных, то происходит преобразование векторной модели данных в растровую модель данных (1 – водный объект, 0 – отсутствие водного объекта).

На втором этапе происходит совмещение таких растровых моделей как: 1. Модель рельефа; 2. Модель водоемов. Это происходит для принудительного задания депрессий в местах расположения рек, озер и болот. На первый взгляд кажется, что этого делать не нужно так как все эти понятия уже присутствуют в модели рельефа. Понятия, соответствующие в основном крупным, водным объектам действительно присутствуют на модели рельефа GTOPO30, однако на модели часто отсутствуют элементы рельефа соответствующие более мелким водным объектам. Так, например, на модели четко просматриваются понятия соответствующие оз. Чаны, Большое Топольное, руслу р. Иртыш (рис. 1), а то же время мелкие озера расположенные на пространстве в 140 км. между оз. Чаны и руслом Иртыша никак не выражены в модели рельефа и это не зависит от разрешения модели так как площадь большинства этих озер превышает 1 км, то есть превышает размер шага сетки (рис. 1 – пунктирный прямоугольник). В то же время детальность представления крупных водных объектов на модели рельефа и векторной карте тоже не всегда совпадает на исходной модели рельефа и на векторной карте (рис. 1 – штрихпунктирный прямоугольник).

Это происходит в силу самых разнообразных причин: низкое разрешение модели GTOPO30, различные источников данных и методов их получения и т.д. [Florinsky 2002]. Для того, чтобы учесть информацию с векторной карты в модели рельефа ее необходимо скорректировать с использованием этой информации. Коррекция модели рельефа с использованием модели гидросети заключается в понижении значений абсолютных отметок узлов регулярной сетки модели рельефа, помещенных как водеом ниже, чем окружающий рельеф. Результат данной процедуры можно видеть на рисунке 2, где на рисунке 2а отображен
участок исходной модели рельфа ограниченный пунктирным прямоугольником на рисунке1, а на рисунке26 показан тот же участок корректированной модели.

- участок со слабой выраженностью небольших водных объектов в модели рельфа
- участок долины р.Иртыш со слабой выраженностью траектории русла реки в модели рельфа

Рис. 1. Несовпадение гидрографической сети электронной векторной карты и соответствующих ей элементов рельфа

Рис.2а. Участок исходной модели GTOPO30
Рис.2б. Тот же участок корректированной модели GTOPO30
На третьем этапе была выполнена операция удаления локальных западин с использованием одного из методов второй группы, перечисленных в первом абзаце статьи. Здесь мы лишь кратко напомним, что в результате процедуры профиль проведенный вдоль направлений линий тока становится монотонно убывающим. Результатом является тотальное удаление всех бессточных областей.

На следующем этапе происходит коррекция модели рельефа полученной на предыдущем этапе с использованием растровой модели тех водоемов, которые связаны постоянной гидросетью с точкой, в которой находится гидрографический пост.

Коррекция заключается в понижении значений абсолютной отметки в этих местах с созданием искусственною западину депрессии. Результатом этой процедуры является появление бессточных областей так, где это нужно.

Главной задачей здесь является отбор тех водоемов, которые не имеют связи с руслом главной реки постоянным водотоком.
ГЕОИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УСТОЙЧИВОГО РАЗВИТИЯ ТЕРРИТОРИЙ И ГИС-ПРОЕКТЫ

Условные обозначения:
- граница водосбора построенная по ЦМВ подготовленной стандартно
- граница водосбора построенная по ЦМВ подготовленной по методике предлагаемой нами
- озера и болота
- реки

Рис. 4. Границы водосборов гидрологического поста в г. Омске, построенные по двум разным методикам

Алгоритм данной процедуры довольно прост. Для его проведения нам нужна регулярная растровая сетка с направлениями потоков и регулярная растровая сетка гидросети. Направления потоков для данной задачи могут быть вычислены с использованием самого простого алгоритма - D8. В качестве исходных данных используется модель рельефа без локальных западин. Кроме этого, в качестве исходной информации нужно положение точки, которая является замыкающим створом данного водосбора. Алгоритм заключается в том, что из каждого узла регулярной сети помеченной как водный объект перемещаемся в направлении указанном во второй регулярной сетке до тех пор, пока не придем в узел сетки являющуюся замыкающим гидропостом, либо приходим в узел сети который не является водным объектом. Если в результате выше описанных процедур мы доходим до заданной точки гидропоста, то помещаем эту узлы сети гидросети одним кодом (темно-серый цвет на рис.3, если мы доходим до узла регулярной сети, который не является гидросетью, то помещаем такие водные объекты другим кодом (светло-серый цвет на рис.3. В результате у нас обособляются те элементы гидросети, которые не связаны постоянным поверхностным водотоком с точкой положения гидропоста. Эта информация используется в дальнейшем для прерывания направлений потоков в бесточных областях и построения границ водосборов с учетом бесточных областей.

На последнем этапе предобработки рельефа выполняется та же операция, что и на втором этапе, но здесь мы понижаем абсолютные отметки только в тех узлах сети, которые не связаны с гидропостом постоянной гидросетью.

В результате при построении границ водосборного бассейна с использованием стандартных методик по подготовленной нами модели границы водосбора (рис.4) и соответственно его площадь очень сильно изменяются. Так например различия границ водосбора реки гидропоста в г.Омске следующие: рассчитанная площадь водосбора без учета бесточных областей 670. тыс. кв. км; рассчитанная площадь водосбора с учетом бесточных областей 367 тыс. кв. км; площадь водосбора по каталогам «Государственного Водного Кадастра» (определяемая в ручную по картам масштаба 1:50000) составляет 337 тыс. кв. км. Из этого видно, что в результате подобной коррекции цифровой модели ошибки проведения границ для данного гидрологического поста существенно сокращается с 97% до 9 %. Кроме этого были проведены аналогичные расчеты еще для четырех гидрологических постов (табл.1) основная площадь водосбора которых расположена в сходных условиях рельефа. Из анализа таблицы 1 видно, что в трех из четырех случаев происходит сокращение ошибок определения площади при использовании предлагаемой методик.
Таблица 1. Ошибки определения водосборных площадей по ЦМВ, подготовленных с использованием различных методик

<table>
<thead>
<tr>
<th>Река/гидропост</th>
<th>Кадастровая площадь, (км²)</th>
<th>Площадь по ЦМВ 1*, (км²)</th>
<th>Площадь по ЦМВ 2*, (км²)</th>
<th>Ошибки определения площадей по ЦМВ 1, %</th>
<th>Ошибки определения площадей по ЦМВ 2, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Иртыш/Омск</td>
<td>337000</td>
<td>667000</td>
<td>367000</td>
<td>97</td>
<td>8.9</td>
</tr>
<tr>
<td>Иртыш/Тобольск</td>
<td>969000</td>
<td>1584310</td>
<td>900000</td>
<td>63</td>
<td>7.1</td>
</tr>
<tr>
<td>Северная Сосьва/ Сосьва</td>
<td>65200</td>
<td>65800</td>
<td>62900</td>
<td>0.9</td>
<td>3.5</td>
</tr>
<tr>
<td>Обь/Белогорье</td>
<td>2165000</td>
<td>2871212</td>
<td>1824940</td>
<td>32.6</td>
<td>15.7</td>
</tr>
</tbody>
</table>

* Примечание: ЦМВ1 – цифровая матрица высот подготовленной стандартно;
ЦМВ2 – цифровая матрица высот, подготовленная с использованием предлагаемой методики

ЛИТЕРАТУРА

Abstract. The article discusses some aspects of the use of geoinformation systems to identify factors of differentiation of the Srednerusskaya partially-wooded steppe landscapes. Voronezh oblast is selected as the test area. Digital country models, built on the materials of SRTM and vectoring topographic maps are a basis for spatial analysis. The author considers the problematic issues of solar radiation on the basis of maps of combinations of surface slopes and slopes exposure. To estimate solar radiation as a leading factor in the zonal differentiation of the territory the map of amendments is constructed.

Среднерусская лесостепь и узкая полоса степной зоны, в пределах Центрального Черноземья, в комплексной географии представляет одной из наиболее изученных территорий России. В основу физико-географического районирования Среднерусской лесостепи был положен ландшафтно-типологический подход, состоящий в анализе пространственных сочетаний основных типов местности – плакорного, водо- и водораздельно-ландового, останцево-водораздельного, междуречного недренированного, склонового, надпойменно-террасового и пойменного, выделенных по геоморфологическому принципу [Михно и др., 2001]. Крупные природные территории на карте физико-географического района выделялись по сходству геоморфологического строения при условии относительной однородности климатических показателей на всей территории выделяемой региональной единицы. Внутренне единство обеспечивается вещественно-энергетическим и информационным обменом между элементами природного комплекса, который формирует крупную парадинамическую систему каждого района. Однако в условиях сильно пересеченной поверхности, в результате развития эрозионного рельефа, оценки прихода солнечной радиации требуют определенных уточнений, а следовательно, и уточнения положения одного из главных ландшафтных рубежей – границы лесостепной и степной зон, до сих пор окончательно не установленного.

Геоинформационные системы позволяют на основе высотных данных оценивать уклоны поверхности и экспозиционные параметры склонов. Для рассматриваемого региона построены цифровые модели местности с размером ячейки грида 300*300 метров по отдельным областям и в целом по региону. В статье приводятся данные только по Воронежской области как ключевой территории. Выбор размера ячейки грида обусловлен средними морфометрическими характеристиками рельефа: средней шириной склонов водосборов, средними расстояниями между тальвегами эрозионных форм рельефа, а также распределением по территории и частотой встречаемости максимальных, минимальных и средних высотных отметок. Размер ячейки грида составил 0,1 км², что позволяло автоматически генерализовать сильное эрозионное расчленение возвышенных равнин, оставши при этом в структуре рельефа склоны крупных суходольных балок, вовлеченных в хозяйственный оборот. На этапе оценки прихода солнечной радиации как единий объект рассматривались субгоризонтальные поверхности междуречных недренированных местностей, плакоров, пойм и надпойменных террас.

Исходя из территориальных особенностей глибинны вреза эрозионной сети (включая речные долины) и средней протяженности склонов водосборов для оценки прихода солнечной радиации были выделены 6 районов (рис.1). Следует отметить, что выделенные районы ни в коей мере не корректируют схему геоморфологического (рис. 2) или ландшафтного районаирования Воронежской области, а являются одной из форм исходного материала, на основе которого можно оценить факторы дифференциации ландшафтов Воронежской области и Среднерусской лесостепи в целом.

Северо-западный район занимает более 5600 км² территориально близок Ведуго-Землянскому району Среднерусской возвышенной равнины [Ежов, 1957]. Характеризуется резко выраженным овраго-балочным рельефом. Поверхность имеет слабый общий уклон в восточном направлении. Средняя протяженность склонов водосборов колеблется от 400 до 500 м. Глубина расчленения изменяется от 50-80 м на западе до 40-50 м на востоке. Максимальная высота 253 м местный базис эрозии находится на высоте 89 метров. Средняя высота территории района составляет 171 м.
ГЕОИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УСТОЙЧИВОГО РАВИТИЯ ТЕРРИТОРИИ И ГИС-ПРОЕКТЫ

Рис. 1. Районы Воронежской области по сочетанию преобладающих высот и уклонов поверхности:
1 – Северо-западный; 2 – район междуречья Потудань – Тихая Сосна; 3 - Западный; 4 – Южный; 5-
Юго-восточный (Калачская возвышенность); 6 – Северный

Рис. 2. Геоморфологические районы Воронежской области
(по Ежову И.И., 1957):
1 – Ведуго-Землянский; 2 – Оскольско-Донской; 3 – Калитвинский; 4 – Южная оконечность Доно-
Воронежского водораздела; 5 – Калачской возвышенности; 6 – Центральный водораздельный; 7 – Южной
части Оско-Донской низменности; 8 – Вороно-Хоперский; 9 – Левобережных террас Дона и Воронежа

Район междуречья рек Потудань и Тихая Сосна имеет площадь 594 км² и совпадает с северной
частью Оскольско-Донского геоморфологического района Среднерусской возвышенной равнины. Основная
часть территории лежит за пределами Воронежской области. В морфоструктурном отношении район
представляет собой пластово-денудационную возвышенную волнистую равнину с выраженным волнисто-
балочным рельефом. Эрозионные формы рельефа имеют центробежный характер. Средняя протяженность
склонов водосборов составляет 400 – 500 м, при средней глубине расчленения 50 – 80 м. Максимальная
высота 212 м. Минимальные отметки располагаются на высоте 88 м. Средняя высота района в пределах Воронежской области составляет 142 м.

Западный район, соответствующий юго-восточной периферии Оскского-Донского и северо-западной части Калитвинского геоморфологических районов Среднерусской возвышенной равнины, имеет площадь 5233 км². Район отличается высокой степенью эрозионного расчленения, особенно в восточной части, протянувшейся меридианально полосой шириной 12 – 20 км вдоль долины Дона на участке между двумя субширотными участками: северным - от устья Тихой Сосны до устья Икора и южным - от устья Черной Калитвы до с. Дерезовка Верхнедонского района. Средняя ширина склонов водосборов составляет менее 300 метров. Такое расчленение определяет общий вид поверхности района, который можно характеризовать как крупноволнистую балочную равнину [Ежов, 1957]. Максимальная высота 231 м. Минимальные отметки имеют высоту 78 м. Средняя высота района составляет 154 м.

Южный район также территориально соответствует части Калитвинского геоморфологического района, но отличается от предыдущего увеличенной шириной склонов водосборов, меньшей глубиной расчленения, максимальной высотой - 228 м, минимальной – 67 м и средней - 146 м. Его отличия от Западного района состоят также в частоте появления выбранных сочетаний уклонов и экспозиций.

Юго-восточный район целиком соответствует Калачевской возвышенности, наиболее четко обособленному геоморфологическому образованию в регионе. Возвышенность сильно расчленена оврагно-балочной сетью, водораздельные пространства большей частью выровнены, слабоволнисты. Максимальная высота территории составляет 251 м, при минимальных отметках – 77 м и средней высоте 146 м.

Северный район территориально включает Центральный водораздельный, район Южной части Окско-Донской низменности и Вороно-Хопский геоморфологические районы. С морфологической точки зрения район резко контрастирует со всеми охарактеризованными выше районами. Это плоская слабо расчлененная равнина с незначительным эрозионным расчленением, широкими склонами водосборов от 500 до 700 и более метров и глубиной расчленения 10 – 40 м. Максимальная высота составляет 212 м, минимальная – 86 м, средняя – 134 м. Широкие междуречные пространства часто образуют плоские недренированные поверхности.

Сводные данные по особенностям высотных морфометрических характеристик районов приведены в таблице 1.

Таблица 1. Сводные данные по особенностям высотных морфометрических характеристик районов

<table>
<thead>
<tr>
<th>Районы</th>
<th>Высота макс., м</th>
<th>Высота мин., м</th>
<th>Амплитуда, м</th>
<th>Средняя высота, м</th>
<th>Дисперсия</th>
</tr>
</thead>
<tbody>
<tr>
<td>Северо-западный</td>
<td>253</td>
<td>89</td>
<td>164</td>
<td>171</td>
<td>31,9</td>
</tr>
<tr>
<td>Междууречье Потудань-Тихая Соснова</td>
<td>212</td>
<td>88</td>
<td>124</td>
<td>142</td>
<td>30,2</td>
</tr>
<tr>
<td>Западный</td>
<td>231</td>
<td>78</td>
<td>154</td>
<td>154</td>
<td>33,6</td>
</tr>
<tr>
<td>Южный</td>
<td>228</td>
<td>67</td>
<td>149</td>
<td>146</td>
<td>37,5</td>
</tr>
<tr>
<td>Юго-восточный</td>
<td>251</td>
<td>77</td>
<td>174</td>
<td>146</td>
<td>37,5</td>
</tr>
<tr>
<td>Северный</td>
<td>212</td>
<td>86</td>
<td>126</td>
<td>134</td>
<td>20,0</td>
</tr>
</tbody>
</table>

В ГИС-пакете Mapinfo и приложении Vertical Mapper были построены карта экспозиционных параметров поверхностей районов и карта уклонов (табл. 2). При помощи SQL-запроса выбраны пространственные сочетания углов наклона поверхности и экспозиционных параметров склонов. Для исключения фактора ширины места при оценке прихода солнечной радиации для каждой ячейки грида по полученным сочетаниям были построены карты поправок к приходу радиации на уклон-экспозицию поверхности (рис. 3).

Избранный метод построения цифровой модели поправок прихода солнечной радиации на уклон-экспозицию поверхности, в отличие от встроенных функциональных возможностей Arcgis или иных программных пакетов (SAGA, Quantum GIS) можно считать оптимальным, поскольку позволяет контролировать процесс создания грида от момента загрузки исходных данных до момента создания выборки сочетаний «уклон-экспозиция» с последующей проверкой ее топологии и устранения возможных пространственных ошибок.

На основе цифровой модели поправок выявлена следующая закономерность. Ведущая дифференцирующая роль в разделении пространства Среднерусской лесостепи на крупные физико-географические районы ранга физико-географических районов принадлежит речным долинам меридионального и субмеридионального направления. Широтные особенности в структуре природных комплексов физико-географических регионов определяются в большей степени за счет перераспределения тепла речными долинами и балочными системами широтного и субширотного направления.
Таблица 2. Уклон и экспозиционные параметры склонов относительно однородных районов территории Воронежской области

Северо-западный район, общая площадь – 5740,8 км²

<table>
<thead>
<tr>
<th>Уклон</th>
<th>Площадь, км²</th>
<th>Доля в площади, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>3524,9</td>
<td>61,4</td>
</tr>
<tr>
<td>3-5</td>
<td>1988,1</td>
<td>34,6</td>
</tr>
<tr>
<td>5-8</td>
<td>173,7</td>
<td>3,1</td>
</tr>
<tr>
<td>8-12</td>
<td>45,2</td>
<td>0,8</td>
</tr>
<tr>
<td>12-15</td>
<td>8,9</td>
<td>0,2</td>
</tr>
<tr>
<td>15-20</td>
<td>0,1</td>
<td>0,002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Экспозиция</th>
<th>Площадь, км²</th>
<th>Доля в площади, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>восточная</td>
<td>1667,8</td>
<td>29,2</td>
</tr>
<tr>
<td>западная</td>
<td>1154,3</td>
<td>20,2</td>
</tr>
<tr>
<td>северная</td>
<td>1391,6</td>
<td>24,4</td>
</tr>
<tr>
<td>южная</td>
<td>1491,7</td>
<td>26,1</td>
</tr>
</tbody>
</table>

Междуречье Потудань - Тихая Сосна, общая площадь – 593,7 км²

<table>
<thead>
<tr>
<th>Уклон</th>
<th>Площадь, км²</th>
<th>Доля в площади, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>359,3</td>
<td>60,5</td>
</tr>
<tr>
<td>3-5</td>
<td>192,5</td>
<td>32,4</td>
</tr>
<tr>
<td>5-8</td>
<td>31,7</td>
<td>5,3</td>
</tr>
<tr>
<td>8-12</td>
<td>8,7</td>
<td>1,5</td>
</tr>
<tr>
<td>12-15</td>
<td>1,6</td>
<td>0,3</td>
</tr>
<tr>
<td>15-20</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Экспозиция</th>
<th>Площадь, км²</th>
<th>Доля в площади, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>восточная</td>
<td>168,2</td>
<td>28,3</td>
</tr>
<tr>
<td>западная</td>
<td>77,4</td>
<td>13,0</td>
</tr>
<tr>
<td>северная</td>
<td>169,9</td>
<td>28,7</td>
</tr>
<tr>
<td>южная</td>
<td>178,3</td>
<td>30,0</td>
</tr>
</tbody>
</table>

Западный район, общая площадь - 5354,923 км²

<table>
<thead>
<tr>
<th>Уклон</th>
<th>Площадь, км²</th>
<th>Доля в площади, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>2472,41</td>
<td>46,2</td>
</tr>
<tr>
<td>3-5</td>
<td>2556,88</td>
<td>47,7</td>
</tr>
<tr>
<td>5-8</td>
<td>267,86</td>
<td>5,0</td>
</tr>
<tr>
<td>8-12</td>
<td>46,63</td>
<td>0,9</td>
</tr>
<tr>
<td>12-15</td>
<td>11,14</td>
<td>0,2</td>
</tr>
<tr>
<td>15-20</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Экспозиция</th>
<th>Площадь, км²</th>
<th>Доля в площади, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>восточная</td>
<td>1364,8</td>
<td>25,5</td>
</tr>
<tr>
<td>западная</td>
<td>1340,6</td>
<td>25,0</td>
</tr>
<tr>
<td>северная</td>
<td>1329,1</td>
<td>24,8</td>
</tr>
<tr>
<td>южная</td>
<td>1320,4</td>
<td>24,7</td>
</tr>
</tbody>
</table>

Южный район, общая площадь - 5773,6 км²

<table>
<thead>
<tr>
<th>Уклон</th>
<th>Площадь, км²</th>
<th>Доля в площади, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>2873,4</td>
<td>49,8</td>
</tr>
<tr>
<td>3-5</td>
<td>2744,2</td>
<td>47,5</td>
</tr>
<tr>
<td>5-8</td>
<td>130,2</td>
<td>2,3</td>
</tr>
<tr>
<td>8-12</td>
<td>20,1</td>
<td>0,4</td>
</tr>
<tr>
<td>12-15</td>
<td>5,6</td>
<td>0,1</td>
</tr>
<tr>
<td>15-20</td>
<td>0,1</td>
<td>0,002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Экспозиция</th>
<th>Площадь, км²</th>
<th>Доля в площади, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>восточная</td>
<td>1338,9</td>
<td>23,2</td>
</tr>
<tr>
<td>западная</td>
<td>1326,3</td>
<td>23,0</td>
</tr>
<tr>
<td>северная</td>
<td>1856,4</td>
<td>32,2</td>
</tr>
<tr>
<td>южная</td>
<td>1252,1</td>
<td>21,7</td>
</tr>
</tbody>
</table>

Юго-восточный район, общая площадь - 12593,8 км²

<table>
<thead>
<tr>
<th>Уклон</th>
<th>Площадь, км²</th>
<th>Доля в площади, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>9874,8</td>
<td>78,4</td>
</tr>
</tbody>
</table>
ГЕОИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УСТОЙЧИВОГО РАЗВИТИЯ ТЕРРИТОРИЙ И ГИС-ПРОЕКТЫ

<table>
<thead>
<tr>
<th>Уклон</th>
<th>3-5</th>
<th>2398,7</th>
<th>19,1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5-8</td>
<td>180,5</td>
<td>1,4</td>
</tr>
<tr>
<td></td>
<td>8-12</td>
<td>73,2</td>
<td>0,6</td>
</tr>
<tr>
<td></td>
<td>12-15</td>
<td>62,5</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>15-20</td>
<td>4,1</td>
<td>0,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Экспозиция</th>
<th>Площадь, км²</th>
<th>Доля в площади, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>восточная</td>
<td>3011,3</td>
<td>23,9</td>
</tr>
<tr>
<td>западная</td>
<td>4068,8</td>
<td>32,3</td>
</tr>
<tr>
<td>северная</td>
<td>2811,7</td>
<td>22,3</td>
</tr>
<tr>
<td>южная</td>
<td>2702,0</td>
<td>21,5</td>
</tr>
</tbody>
</table>

Северный район, общая площадь - 22171,6 км²

<table>
<thead>
<tr>
<th>Уклон, градусы</th>
<th>Площадь, км²</th>
<th>Доля в площади, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>20569,29</td>
<td>92,8</td>
</tr>
<tr>
<td>3-5</td>
<td>1534,403</td>
<td>6,9</td>
</tr>
<tr>
<td>5-8</td>
<td>50,57316</td>
<td>0,2</td>
</tr>
<tr>
<td>8-12</td>
<td>11,77167</td>
<td>0,1</td>
</tr>
<tr>
<td>12-15</td>
<td>5,578469</td>
<td>0,03</td>
</tr>
<tr>
<td>15-20</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Экспозиция</th>
<th>Площадь, км²</th>
<th>Доля в площади, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>восточная</td>
<td>5471,195</td>
<td>24,7</td>
</tr>
<tr>
<td>западная</td>
<td>6438,040</td>
<td>29,0</td>
</tr>
<tr>
<td>северная</td>
<td>5751,283</td>
<td>25,9</td>
</tr>
<tr>
<td>южная</td>
<td>4511,098</td>
<td>20,3</td>
</tr>
</tbody>
</table>

Рис. 3. Поправки к приходу солнечной радиации на уклон-экспозицию поверхности

С использованием карты поправок были построены производные карты прихода фотосинтетически активной радиации и прогностическая карта, позволяющая выявлять возможное распространение остатков степных растительных сообществ на склонах, пригодных для включения сеть особо охраняемых природных территорий региона, обеспечивающих сохранение ландшафтного и биологического разнообразий территории, рациональное ведение природопользования деталяности.

ЛИТЕРАТУРА

THE MULTI-CRITERIA ASSESSMENT AND GIS RECONSTRUCTION
OF CHANGES OF RECEIPT OF RIVER WATERS ON A SHELF OF LAPTEV SEA

Vasiliev V. Ya, Dmitriev V. V., Ogurtsov A. N.
Faculty of Geography and Geocology
Saint-Petersburg State University
Saint Petersburg, Russia
E-mail: vvd1951@yandex.ru

Abstract. In the given work the methodical basis of use of integrated indexes for GIS-reconstruction of
changes of receipt of a river drain on a sea shelf is considered. The innovative party of researches is application of a
technique of construction of integrated indexes with use of the non-numerical, inexact and incomplete information
(NNN-information). The description of a method of the analysis and synthesis of parameters under information
deficiency and its applications to results of the analysis aquatic palynomorph in deposits of the Arctic seas. The
example of GIS-reconstruction executed for water area of Laptev sea is presented.

В данной работе рассматривается методическая основа использования интегральных индексов для
ГИС-реконструкции изменений поступления речного стока на морской шельф. Инновационной стороной
исследований является интеграция результатов микропалеонтологического анализа водных палиноморф,
методики построения интегральных индексов с использованием нечисловой, неточной и неполной
информации (NNN-информации) и ГИС-технологии визуализации результатов исследований. Дано описание
метода анализа и синтеза показателей при информационном дефиците и его применение к анализу водных
палиноморф в осадках арктических морей. Представлен пример ГИС-реконструкции, выполненный для
акватории моря Лаптевых.

В настоящее время отмечается активизация проведения экспедиционных исследований в
Арктическом регионе, что обусловлено с одной стороны освоением новых месторождений и развитием
нефтяной и газодобычи в АЗР и высокой чувствительностью геосистем высоких широт к глобальным
изменениям природного и техногенного характера с другой стороны. При этом повышенный интерес
проявляется не только к анализу и оценке современных, но и палеоэкологических процессов на шельфе
арктических морей и в устьевых зонах сибирских рек.

Для палеоэкстракции и анализа палеоэкологических условий в настоящее время широко
используются методики микропалеонтологического анализа донных осадков, включая анализ спорово-
пыльцевых спектров, анализ диатомей и бентосных фораминифер и др. В практике палеоисследований
приходится сталкиваться с анализом и оценкой многомерных объектов (проб донных отложений), которые
характеризуются большим числом параметров, структурированных множеством функциональных и
корреляционных взаимосвязей.

Так, например, на формирование спорово–пыльцевых комплексов влияет множество факторов,
включая различную пыльцевую продуктивность растений, условия транспортировки пыльцы и спор к месту
захоронения, их сохранность в зависимости от условий захоронения и т.д. Эти факторы, способствуют тому,
что процентный состав спектра пыльцы, зачастую, не является адекватным отражением процентного состава
растительного покрова и экологических условий его произрастания. Формирование ассоциаций
микрофоссилей и их сохранность также подвержена влиянию условий окружающей среды.

Наряду с вышеперечисленными методиками в практике реконструкций палеоусловий в морях
Арктики в последние годы все большее значение приобретает изучение водных палиноморф (ВП), которые
включают в себя цисты морских видов динофлагеллат, имеющие высокую степень сохранности,
пресноводные зеленые водоросли, а также другие органические остатки водных микроорганизмов
закономерностей пространственного распределения видового состава ассоциаций водных палиноморф, и, в

1 Настоящее исследование выполняется при поддержке Российского фонда фундаментальных исследований
(проект 11-05-00909-а)
частиности, влияние изменений поступления речных вод на морской шельф [Matthiessen, 2000, Kunz-Pirrung, 2001].

Кроме того, сведения о палеосреде, как правило, исчерпываются точными (дискретными) измерениями на станциях отбора проб донных отложений. Результаты таких измерений, учитывая высокую пространственную неоднородность полей донных осадков, часто вносят неопределенность в интерпретацию палеоданных. Анализ и обобщение такой информации обусловливает необходимость использования специализированных методов и методик для улучшения качества и достоверности палеогеографических реконструкций.

В рамках исследований авторами использована методика построения интегральных (сводных) показателей, базирующаяся на принципах методологии анализа и синтеза показателей при информационном дефилите (АСПИД-методология) [Хованов, 1998]. К настоящему времени в палеогеографии известна лишь одна работа по использованию метода интегральных показателей для анализа и оценки спорово-пыльцевых спектров озерных осадков [Мякишева, 2006].

В основе методических построений лежит представление об исследуемых объектах, как о сложных (многопараметрических) системах, качество которых описывается системой исходных характеристик. Между компонентами множества, образующего систему, существуют симметрические связи и отношения, благодаря которым реализуется специфическое для системы единство. Система обладает общим смыслом, «интегральными» свойствами и характеристиками, которыми не обладают ни составляющие ее элементы (компоненты), взятые по отдельности, ни простая «арифметическая сумма» элементов. Иначе говоря, свойства системы в целом неаддитивны (емерджентны) по отношению к свойствам ее элементов и подсистем. В связи с этим, существенным показателем внутренней целостности системы является ее автономность, или относительная самостоятельность поведения и существования. По автономности можно в известной степени судить об уровне и степени их относительной организованности и самоорганизованности системы. Таким образом, в геоэкологических исследованиях необходимо ставить вопрос об интегральной оценке состояния геосистем, для выполнения которой, необходимо использовать кроме аддитивных характеристик и неаддитивные (например, автономность, устойчивость, уязвимость, живучесть, целостность, надежность, благополучие и др.).

В палеогеографии применительно к результатам спорово-пыльцевого анализа и анализа водных палинологических анализов примером многопараметрических объектов служат пробы колонок донных отложений.

Вторым важным компонентом исследований является ГИС-моделирование, включающее построение полей интегральных индексов с использованием приемов интерполяции.

Постановка задачи и методика

Исследуются и анализируются образцы донных отложений, состоящие из k проб, каждая из которых характеризуется набором из m признаков (исходных характеристик). Представим k изучаемых объектов матрицей исходных характеристик (признаков) \(\{x_{ij}^0\}, \quad j = 1, k; \quad i = 1, m; \quad \text{где} \ x_{ij}^0 - \text{значение} \ i-го \ \text{признака} \ \text{для} \ j-ой \ \text{пробы}. \)

Информационная неопределенность задается двумя таблицами – таблицей отдельных показателей, которые являются функцией исходных характеристик \(q(x) \) и таблицей весовых коэффициентов. Таблица отдельных показателей \(\{q_{ij}^0\}, \quad j = 1, k; \quad i = 1, m; \quad \text{указывает степень} \ \text{предпочтительности} \ \text{j-ого} \ \text{объекта} \ \text{с точки зрения} \ \text{i-го} \ \text{критерия}. \)

При этом \(q_{ij}^0 = 0 \) соответствует минимальной, а \(q_{ij}^0 = 1 \) – максимальной степени предпочтения объекта с точки зрения i-го критерия. Таблица весовых коэффициентов \(\{w_{ij}\}, \quad j = 1, k; \quad i = 1, m \), отражает значимость отдельных показателей. Весовые коэффициенты удовлетворяют условию весовой функции: \(w_i \geq 0, w_{0i} + \ldots + w_{mi} = 1. \)

Для уменьшения мерности объекта воспользуемся приемом построения сводного показателя, сопоставляя каждому j-му m-мерному вектору \(q^0 = \{q_{ij}^0\}, \quad i = 1, m, \ ق Q^0 \in \ [0,1], \) которое представляет собой оценку объекта в целом. Построение сводного показателя \(Q^0 \) можно рассматривать как снижение размерности исследуемого признакового пространства до единицы.

В реальной ситуации исследователь не знает точных значений \(\{q_{ij}^0\}, \ {w_{ij}} \). Дефект информации о точных значениях весовых коэффициентов \(w^0 \) моделируется \(w^0_{\text{случайная}}, m-мерной случайной величиной, \) равномерно распределенной на \((m - 1) \) - мерном симплексе \(S = \{(w_1, ..., w_m) : w_i \geq 0, w_1 + \ldots + w_m = 1\}, \) расположенным в \(m \)-мерном евклидовом пространстве \(E^m \). Подставляя случайные веса \(w^0 \) в выражение сводного показателя \(Q^0 = Q(q^0, w^0) \), получаем случайный сводный показатель \(Q^*(w^0, w^0) \). Имея случайно выбранные \(\text{т.н. отдельные} \) сводные показатели \(Q^*(w^0) \) и \(Q^**(w^0) \) двух объектов (проб) \(X = (X_1, ..., X_n), X' = (X'_1, ..., X'_n) \), можно свести задачу оценивания сравнительной предпочтительности этих объектов к задаче выявления того или иного вида стохастического доминирования между случайными

1 В настоящей работе сводный показатель \(Q^0 \) определяется линейной сверткой отдельных показателей \(q^0 \) с весовой функцией \(w^0 \).
величинами \(Q^* \) и \(Q'^* \). В простейшем случае степень предпочтительности объекта \(X = (X_1, ..., X_n) \) может быть оценена математическим ожиданием рандомизированного сводного показателя \(Q_{op} \), а точность такой оценки — стандартным отклонением \(\sigma(q) \) этого же рандомизированного сводного показателя.

Неопределённость задания весовых коэффициентов может быть существенно снижена за счёт учета информации \(I_q \) об ограничениях, налагаемых на значения вектора. Например, информация о сравнительной весомости отдельных показателей может задаваться в виде системы неравенств \(I_q = \{ w_i \geq w_1, w_i > w_n, w_i = w_j \} \).

Дефицит информации об отдельных показателях может быть восполнен, если имеется зависимость отдельных показателей от соответствующих исходных характеристик. Тогда назначаются минимальное и максимальное значения исходной характеристики, при которых показатели \(q \) принимают минимальное (0) или максимальное (1) значения. Затем подбирается функциональное соответствие между численными значениями исходных характеристик и численными значениями отдельных показателей. Например, задается нормирующая функция вида:

\[
q_i = q_i(x_i) = \begin{cases}
0, & x_i \leq x_{\min} \\
(x_i - x_{\min})/(x_{\max} - x_{\min}), & x_{\min} \leq x_i \leq x_{\max} \\
1, & x_i \geq x_{\max}
\end{cases}
\]

и (или)

\[
q_i = q_i(x_i) = \begin{cases}
1, & x_i \leq x_{\min} \\
(x_{\max} - x_i)/(x_{\max} - x_{\min}), & x_{\min} \leq x_i \leq x_{\max} \\
0, & x_i \geq x_{\max}
\end{cases}
\]

Предлагаемая методика реализована на примере ключевого участка — «дельта р. Лена — море Лаптевых».

В основу модельных расчетов интегральных индексов реконструкции пространственных изменений стока речных вод положены результаты исследования 92 поверхностных проб донных осадков с шельфа и прилегающих акваторий моря Лаптевых [Хованов, 1996].

Анализ этих материалов показывает, что сообщества водных палиноморф отличаются друг от друга как по относительному составу экологических групп, так и по приуроченности их к различным местоположениям и гидрологическим особенностям шельфа. В частности процентный состав каждого вида как динофлагеллат, так и зеленых водорослей может меняться в несколько раз. Например, относительное содержание вида Pediastrum spp изменяется от 0 до 45%.

Процесс построения индексов носит многоступенчатый характер, в основе которого лежат методические построения синтезирующих функций, учитывающих значимость отдельных признаков. При этом наряду с количественными данными используется нечисловая, неточная и неполная информация.

На первом этапе выделяются обобщенные информативные признаки, по которым будет проводиться идентификация интенсивности речного стока и формируется вектор исходных характеристик \(x_1, ..., x_m \). В качестве индикаторов оценки рассматривались как цисты морских видов динофлагеллат, так и таксены пресноводных зеленых водорослей.

На втором этапе выделенные информационные показатели используются для построения индекса. При построении индекса использовалась модель синтезирующей функции

\[Q = Q(q; w) = Q(q_1, ..., q_m; w_1, ..., w_m) = \sum_{i=1}^{m} q(w_i, q_i) \]

с помощью которой отдельные показатели интенсивности \(q_i \) агрегируются в единый интегральный индекс (сводный показатель). Диапазон изменений индекса находится в интервале от 0 до 1, при этом индекс конструировался так, чтобы максимальные значения (ближкие к единице) свидетельствовали о высокой интенсивности поступления речных вод. Вектор отдельных показателей представляет собой числовую функцию \(q_i = q_i(x_i) \) исходных характеристик, которая характеризует интенсивность поступления речных вод на акваторию с точки зрения отдельного критерия (признака). Значимость отдельных показателей определяется конечным множеством \(W(m, n) \) допустимых векторов весовых коэффициентов \(w = (w_1, ..., w_m) \).

Матрица отдельных показателей \(\{q_i^{(0)}\} \) рассчитывалась по соотношению

\[
q_i = q_i(x_i) = \begin{cases}
0, & x_i \leq x_{\min} \\
(x_i - x_{\min})/(x_{\max} - x_{\min}), & x_{\min} \leq x_i \leq x_{\max} \\
1, & x_i \geq x_{\max}
\end{cases}
\]

в соответствии с назначёнными границами минимальных и максимальных значений обобщенных признаков, приведёнными в таблице. Там же дана информация о весовых коэффициентах \(w_i^{(0)} \), используемых для модельных расчетов.
ГЕОИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УСТОЙЧИВОГО РАЗВИТИЯ ТЕРРИТОРИЙ И ГИС-ПРОЕКТЫ

Таблица 1. Оценочные признаки, граничные условия и дополнительная информация для расчета интегральных индексов

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Видовой состав водных палинборф (оценочный признак)</th>
<th>Возможные границы изменения обобщенных признаков, %</th>
<th>Весовые коэффициенты (предпочтительность отдельных показателей)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brigantedinium simplex</td>
<td>мин 0 80</td>
<td>$w_6 = w_7 = w_8 = w_9 \geq w_1 = w_2 = w_3 = w_4 = w_5$</td>
</tr>
<tr>
<td>2</td>
<td>Operculodinium centrocarpum</td>
<td>max 0 50</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Spiniferites elongatus</td>
<td>min 0 10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Pentapharsodinium dalei</td>
<td>max 0 60</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Polykrikos spp.</td>
<td>min 0 20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Pediastrum spp.</td>
<td>max 0 50</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Pediastrum boryanum</td>
<td>0 35</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Pediastrum kawraiskyi</td>
<td>0 20</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Botryococcus braunii</td>
<td>0 15</td>
<td></td>
</tr>
</tbody>
</table>

На третьем этапе средствами ГИС-технологии разработана картографическая модель пространственного изменения интегральных индексов, характеризующих интенсивность поступления речных вод на акваторию моря Лаптевых. Картографическое отображение результатов расчета позволило создать карту интенсивности поступления речных вод на акваторию моря (рисунок) с оценочной шкалой и выделением участков с различной степенью интенсивности.

Анализ результатов показывает, что значения индекса варьирует в пределах исследуемой акватории от 0,1 до 0,6. Наиболее значительные значения индекса (наибольшее влияние стока) отмечены в приустьевых участках рек, где его величина достигает значения 0,6. Наиболее обширная область повышенных значений индекса (0,5-0,6) отмечается в приустьевой части Быковской и Трофимовской проток р. Лены. К северу и северо-западу от дельты реки Лены, где поступление речного стока невелико, величина индексов не превышает 0,1-0,2.

![Интенсивность поступления речного стока на акваторию моря Лаптевых](image-url)
The world of children is often said differently compared with the world of adult people. This is understandable because children, with the young ages, their limited experiences, it is not possible to have a similar perception with the adult people like us. However, it is interesting to know their perception about the world. In reality, representation of earth’s pictures through the children map drawing was mostly based on the inspiration from their daily life activities. This inspiration is required by children having high motivation and creative thinking.

On the other hand, to help children in understanding map, there is an effort needed by geography teachers,
geographers or cartographers and other mapping professionals to teach them. World or the earth’s environment as a place of our lives is a picture to be introduced for children through geography subject in elementary and secondary school. Some teaching aids for introducing the knowledge of the earth can be in the form of map, aerial photos and globe.

Ronald Carswell in Martha (1994) reported that children have different capability in reading topographic maps. Three dimensional maps having contour are the better media to make the children understand more in geography. For transitional stage to read the real (topographic maps), it is good for children to learn through map drawings – at least a perception of world can be fully understood and performed in the form of map.

INDONESIAN TRIHEDI’S MAP DRAWING

From 304 maps received by Children Map Drawing committee, 9 (nine) map drawings by Trihedi Oktianto, Maryudi Lemi, Sri Supriyati, Dewi Khusnul Khotimah, Oktora Dika S (7-12 year category), and Delly Ariantono, David, Fransiska, Indra Guna, Sukamto (13-16 years category) were selected as national winners to be sent for international competition. At least two drawings, out of nine selected works above, one by Delly Ariyantono (13-16 years category) and another one by Trihedi Oktianto (9-12 years category) are very special. Firstly, world was abstractly drawn by Delly as one continental unity, unseparated, represented by three different colors: continent with yellow color, ocean with blue and surrounded by black color with white dots indicating the dark sky at night time. This drawing may be categorized as a pessimistic stream. Anyhow, Delly who was older than Trihedi, still had not experimented with the point, line and area symbols.

Fig. 1. Map drawing “Peta Bangunan termasuk Mekkah” (Buildings Map including Mecca), created by Trihedi Oktianto-one of the winner of ICA Barbara Petchenik Prize in 1993

Secondly, map drawing by Trihedi Oktianto was selected as the best map in the category of 9-12 years old kids. His drawing as shown in Fig. 1 was then selected as an international winner for ICA-Barbara Petchenik Prize. His work emphasized with the world peace through his visual and pictorial presentation of map. Symbols he used were representing the actual reality of people life in the environment, and drawn by pictorial cartographic symbolization. For instance, *Kaaba* is drawn in the middle of the maps with Saudi Arabian environment, and its flag. The important thing is the question about why Trihedi posted *Kaaba* in the centre of the map. There is a man who wear Arabian traditional dress weaving his hand to the other people. The function of *Kaaba* in Moslem belief It can be described that the map drawing has spiritual meaning. This is because he located *Kaaba* as centre of the world in his painting. Muslim believes that *Kaaba* is the central of direction for shalah (prayer). This can be as a center for activities and important tool to unite *ummah* or muslim members in all over the world. According to Trihedi, *Kaaba* is the only monument that can provide spirit and motivation for world peace. This was also the reason why Trihedi named his drawing with ‘*Bangunan dengan Mekkah*’ (Building including Mecca).

Liberty statue was drawn to represent American continent; Kangoroo and Opera House to indicate Australian land. Other continents were similarly drawn something like this. All picture performances inform the focus on human life, animal, building and the environment of the earth. All populations were in friendly manner, waiving hand each other, all were agreed to have a peaceful condition in the world. Contrary to Delly’s picture, this Trihedi’s drawing could be categorized more as optimistic stream. Therefore, Trihedi Oktianto, map maker wanted
to emphasize on creating peace. Hopefully, it can be said that map drawing could be as a useful tool for motivating people living in this world with peace and harmony.

DISCUSSION

The aims of children map drawing competition are to promote children’s creative representation of the world; to enhance their cartographic awareness, and to make them more conscious of their environment [Wiegand and Anderson, 2005].

Why does the drawing have a Spiritual Cartographic Mission?

Even though, it may not be formally categorized as cartographic work because it’s oblique and no geographical names on it. However, there has a spirit and motivation, at least for the readers, and particularly for young people.

Trihedi’s map contents full of creativity in performing the world. The map has also colorful picture and it’s nice to see on it. His hand drawing is very sharp and having full of messages. It will be cartographically concerned by readers. He owes as much to art and graphic design as to cartography even it’s oblique drawing. By learning Trihedi’s map, one may gain more conscious of the environment.

Children’s early experimentation with cartographic principle is exist the result of competition. This is important for an agenda for education. If the children still don’t understand about maps and how maps work, their teachers, and parents would like to learn. The children who are interested in map drawing would be possible in the future as map makers or map users to visualize geospatial data.

National Coordinating Agency for Surveys and Mapping (BAKOSURTANAL) has conducted and coordinated the national competition of drafting world map for children. During 1993 competition, there were map drawing selection mechanisms as follows:

a. The selection criteria were based on originality of the drawing; the message/ mission of map drawn; and the art and drawing techniques;

b. Each juries could select (by scanning) 10 pieces of map drawing according to his/her selection, out of 304 map drawings received by the committee (see Table 1);

c. All collected drawings, were reselected by juries to become 34 nominative drawings. Then, reselected into 14 best map picture drawings (as final nomination);

d. Out of 14 drawings, 10 map drawings were selected as national winners.

Not only the 10 national best map drawing, but also 14 drawings were sent to ICA for the competition. Only Trihedi’s map was selected as one of the 10 international winners. Then, based on the information from Jean-Philippe Grelot, by her fax no. ACI/AMO.93 dated July 16, 1993, the international winners were:

1. ‘Greenland’ by Yui Seiko (13) from Japan;
2. ‘No smoking’ by Agnes Horvath (15) from Hungary;
3. ‘Peace in the World’, by Alfonsas Lekavicius (11) from Lithuania;
4. Children around the World, by Jana Durankova (13) from Slovakia;
5. Pomul Victii, by Bratu Poud (15) from Romania;
6. Bangunan termasuk Mekkah, by Trihedi Oktianto (12) from Indonesia;
7. Sticking up the World, by Andre Nguyen Machiaverni (11) from Brazil;
8. The Horse Population of the World by Taiga Marthens (11), from USA;
9. Greetings from the World by Henry Huang (14) from England, and

Table 1. World Map Drawing Competition for the Children in Indonesia, 1993 (numbers of maps received by Province)

<table>
<thead>
<tr>
<th>No</th>
<th>Age Category (years old)</th>
<th>Jakarta Capital Region</th>
<th>West Java</th>
<th>Yogya Special Region</th>
<th>Central Java</th>
<th>Bengkulu</th>
<th>Jambi</th>
<th>North Sumatera</th>
<th>West Kalimantan</th>
<th>North Sulawesi</th>
<th>Southeast Sulawesi</th>
<th>Bali</th>
<th>NTB</th>
<th>All Provinces</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>7-12</td>
<td>1</td>
<td>79</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>21</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>116</td>
</tr>
<tr>
<td>2.</td>
<td>13-16</td>
<td>3</td>
<td>130</td>
<td>1</td>
<td>11</td>
<td>6</td>
<td>1</td>
<td>15</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>189</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4</td>
<td>209</td>
<td>2</td>
<td>15</td>
<td>12</td>
<td>2</td>
<td>36</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>304</td>
</tr>
</tbody>
</table>

The World Children map competition is an effort by ICA to memorize Barbara Pechenik, a past ICA Vice President, who was already passed away. In Indonesia, Head of BAKOSURTANAL, Prof. Jacub established a National Committee, headed by himself, and all Deputies as representative experts, the writer as Secretary of the Committee, other experts are Prof. I. Made Sandy (the University of Indonesia), and Prof. R. Sutanto (the University of Gadjah Mada), and one from the representative of Ministry of Education and Cultures. Their tasks are to select all map drawings of Indonesian kids, to be promoted in the international competition during 16th ICA meeting in
Cologne, Germany, 3-9 May 1993. For about 300 drawing maps were selected into 10 drawings as national winners. Those ten winners were to be sent to international competition of ICA based in France. Those are to compete with hundreds of drawings from 28 countries. The world map drawn by Trihedi Oktianto, one of elementary school student, at that time, was selected as a winner representing Indonesian children map drawing. His drawing was then became a UNICEF congratulation card in 1995. Besides that, Trihedi’s map was also awarded Certificate of Appreciation and also money from BAKOSURTANAL. Not only this, Trihedi’s drawing was become a first day cover from post office during 25th anniversary of BAKOSURTANAL and kept the document in Stamp Museum in Taman Mini Indonesia Indah (TMII) Jakarta. It was also published as a front cover of BAKOSURTANAL’s semi-scientific magazine of Geoinformatika, vol. I, no.3, February, 1994.

Ten years later, BAKOSURTANAL conducted such competition in more professional way and indicated the increased numbers of participants. Numbers of map received by the committee were 1070 participants in 2003, 1002 participants in 2005 and 1377 participants in 2007.

CONCLUDING REMARKS

1. For an Indonesian child, like Trihedi, the perception of his mind to draw the world picture will be based on his environment, including family life and even his belief. And then, he expressed it into map drawing.
2. Inserting Kaaba as a centre of his drawing with ‘lambaian tangan’ (hand weaving) done by people in each country will indicate as a main spirit for his drawing itself. This picture of course, will motivate young people to learn more about maps and geography, while Kaaba and hand weaving are two symbols used for peace. This will have meanings of an international understanding and respect for others.
3. Finally, Trihedi Oktianto has been able to express his hopes about peace of the world through his map drawing. He was learning how to publicize the messages cartographically.
4. This is the first, and later on, in 2003 we start again with better arrangement and organization. Since then, BAKOSURTANAL, as a national focal point, has organized better competition and conducted such event continuously every two years.

REFERENCES

КАРТА, СОЗДАННАЯ ИНДОНЕЗИЙСКИМ РЕБЁНКОМ ТРИГЕДИ:
ДУХОВНАЯ КАРТОГРАФИЧЕСКАЯ МИССИЯ ОТ ОДНОГО ИЗ ПОБЕДИТЕЛЕЙ ПРЕМИИ БАРБАРЫ ПЕЧЕНИК

Сукендра Марта
Картографическая Ассоциация Индонезии и
Национальное координационное агентство геодезии картографии (BAKOSURTANAL)
P.O. Box 46/CBI
Cibinong, Indonesia
sukendra@bakosurtanal.go.id

ВВЕДЕНИЕ

Детский мир, как это принято считать, практически несовместим с миром взрослого человека. И это понятно, потому что дети в юном возрасте имеют ограниченный опыт, и их восприятие, естественно, отличается от восприятия взрослого человека. Однако, интересно узнать, как они видят мир. В реальности, представление изображений земной поверхности посредством детского картографического рисунка преимущественно на вдохновении, которое они черпают в ежедневных занятиях. Это вдохновение необходимо детям для высокой мотивации и образного мышления.

С другой стороны, детям надо помогать понимать карты. Этим занимаются учителя географии,
профессиональные географы или картографы.

С миром, или окружающей средой как с местом, где мы живем, в виде картинок дети знакомятся на предмете география в начальной и старшей школе. Обучение оказывает некоторую помощь в том, что дает знания о том, каким именно образом земля может быть представлена в форме карты, космических снимков или глобуса.

Рональд Карвелл [1994] писал о способностях детей к чтению топографических названий. Трехмерные карты с контуром являются лучшим средством для большего понимания детьми географии. Для переходной стадии к чтению реальных картографических названий (топонимов), обучение детей через картографический рисунок является большим плюсом — создается более полное представление о мире и отражается в виде карты.

ИНДОНЕЗИЙСКИЙ КАРТОГРАФИЧЕСКИЙ РИСУНКУ ТРИГЕДИ

Из 304 карт, полученных комиссией по Детскому картографическому рисунку, 9 (девять) рисунков Тригеди Октианто, Маруки Леми, Шри Суприяни, Деви Хуссул Хотимах, Октора Дика С. (категория 7-12 лет), и Делли Арианто, Дваапл, Франция, Индра Гуна, Сукамто (категория 13-16 лет) были выбраны национальными победителями и заявлены на участие в международном конкурсе. И два рисунка, из девяти отобранных работ, один — сделанный Делли Арианто (категория 13-16) и другой — рисунок Тригеди Октианто (категория 9-12 лет) являются особенными. Во-первых, на рисунке Делли мир абстрактно изображен как единый контinent, неразделенный, трех размерными цветами: желтый символизирует континентальную часть, синий — океан, и окруженый черным цветом с белыми точками — ночной небом со звездами. Этот рисунок можно отнести к пессимистичному направлению. Во всяком случае, Делли, будучи старше Тригеди, не экспериментировал на карте с точками, линиями, площадями и значками.

Рис. 1. Картографический рисунок “Peta Bangunan termasuk Mekkah” (Кarta зданий, включая Мекку), сделанная Тригеди Октианто - одним из лауреатов премии Барбары Печечик

Международной картографической ассоциации (МКА) 1993 г.

Во-вторых, картографический рисунок Тригеди Октианто был признан лучшей картой в возрастной категории 9-12 лет. Его рисунок, как показано на рис.1 позже победил в конкурсе детского рисунка Международной картографической ассоциации и был удостоен премии Барбары Печечик. В его работе сделан акцент на жизни людей в мире через визуальную и значковую составляющую карты. Тригеди использовал значки, чтобы отобразить реальность сегодняшнего дня, в которой живут люди, и нарисовал это картографическими символами в форме рисунков.

Например, Кааба часто изображается на картах Саудовской Аравии и ее регионов, вместе с ее флагом. И важен вопрос: почему Тригеди поместил Каабу в центре своей карты? На ней также изображен человек, одетый в традиционный арабский костюм, человек этот мешает рукой другим людям.

Значение Каабы в мусульманской религии

Картографический рисунок имеет в том числе духовное значение. Поэтому еще, что Тригеди разместил Каабу в центре мира на своем рисунке Мусульмане верят, что Кааба — это центр (главное направление) для молящегося. Она может быть центром деятельности, а также важным инструментом, позволяющим объединить мусульман (ummah) всего мира.

По рисунку Тригеди, Кааба — это единственный монумент, который может обеспечить духовность и
мотивацию для людей жить в мире. Это также и причина, почему Тригеди назвал свой рисунок «Bangunan dengan Mekkah» (Здания, включая Мекку).

Нарисованная Статуя Свободы обозначает американский контinent, Кенгуру и здание оперного театра в Сиднее символизируют Австралию. Так же были изображены и остальные континенты. Все части рисунка содержат информацию о жизни человека, животных, зданиях и окружающей среде, в которой они находятся. Все население нарисовано очень дружелюбным – все люди машут друг другу, и все согласны жить в мире. В отличие от рисунка Делли, работа Тригеди может быть отнесена к оптимистическому направлению. Таким образом, картограф Тригеди Октианто уделил особенное внимание в своей работе установлению мира в мире. С надеждой можно сказать, что картографический рисунок может стать полезным инструментом для мотивирования людей жить в мире и гармонии.

ИЗУЧЕНИЕ ВОПРОСА

Проведение конкурса детского картографического рисунка способствует развитию творческого начала в представлении мира, а также улучшает картографическую осведомленность и делает детей более ответственными за окружающий их мир [Wiegand, Anderson, 2005].

Почему рисунок несет в себе духовную картографическую миссию?

Формально эти работы не считаются полноценными картографическими произведениями, так как континенты нарисованы произвольно, и присутствуют лишь косвенные указания на них, вместо географических названий. Однако в них есть и духовность, и мотивация. Хотя бы для читателей, и в особенности для молодых людей.

Карта Тригеди является очень творческой в плане представления мира. Его карта также содержит цветные изображения, на которые приятно смотреть. Этот рисунок очень актуален и информативен и с точки зрения картографии увлекательен для читателей. В нем есть и искусство, и графический дизайн, и картография. Изучение карты Тригеди может заставить кого-то задуматься об ответственности за окружающий мир.

Ранние эксперименты детей с картографическими принципами - это существующий результат конкурса, важный для образовательных программ. Если дети все еще ничего не понимают ни в картах, ни принципах, как работают карты, то их учителя и родители знают все это. Дети, которые уже заинтересовались картографическими рисунками, в будущем могут стать как картографами-создателями, так и пользователями-читателями карт с точки зрения работы с визуализацией информации в картографическом виде.

Национальный координационный центр геодезии и картографии (BAKOSURTANAL) проводит и координирует национальный конкурс по детскому рисунку карты мира. Во время конкурса в 1993 г. были приняты такие принципы отбора картографических рисунков:

a. Критерии выбора основывались на оригинальности рисунка, смысловом сообщении/миссии, которую нес рисунок, художественности и технического исполнения;
b. Каждый член жюри мог выбрать (просматривая) 10 работ, согласно своему выбору из 304 картографических рисунков, полученных комитетом (см. Таблицу 1);
с. Из всех отобранных рисунков, на следующем этапе было выбрано 34 номинанта;
d. Далее, из них были отобраны 14 лучших картографических рисунков (финальная номинация);
e. И уже из 14 работ 10 стали признаны национальными победителями конкурса.

В Международную картографическую ассоциацию было отправлены и 10 лучших работ, и еще 14 для участия в конкурсе. И только карта Тригеди стала одной из 10 выбранных работ-победителей международного конкурса. Далее на основе информации, полученной от Жан-Филипп Грело по факсу № ACI/AMO от 16 июля 1993, международными победителями:

1. «Гренландия», Юй Сейко (13 лет, Япония);
2. «Нет курения», Агнес Хорват (15 лет, Венгрия);
3. «Мир во всем мире», Альфонсас Левавинус (11 лет, Литва);
4. «Дети всего мира», Яна Дуркавана, (13 лет, Словакия);
5. Pomul Victii, Брати Пууд (15 лет, Румыния);
6. Bangunan termasuk Mekkah, Тригеди Октианто (12 лет, Индонезия);
7. Sticking up the World, by Andre Nguyen Machiaverni (11 лет, Бразилия);
8. The Horse Population of the World by Taiga Marthens (11 лет, США);
9. Greetings from the World by Henry Huang (14 лет, Великобритания) и
Таблица 1. Детский конкурс рисунка карты мира (в Индонезии), 1993 г.
(число карт, полученных по провинциям)

<table>
<thead>
<tr>
<th>№</th>
<th>Возраст (лет)</th>
<th>Джакарта, столичный регион</th>
<th>Западная Ява</th>
<th>Джакарта-Рая, особый регион</th>
<th>Центра́льная Ява</th>
<th>Бенгкулу</th>
<th>Джамби</th>
<th>Северная Суматра</th>
<th>Западный Калимантан</th>
<th>Север Сулавеси</th>
<th>Юго-восточный Сулавеси</th>
<th>Бал и</th>
<th>НТВ</th>
<th>Все провинции</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7-12</td>
<td>1</td>
<td>79</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>21</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>13-16</td>
<td>3</td>
<td>130</td>
<td>1</td>
<td>11</td>
<td>6</td>
<td>1</td>
<td>15</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>189</td>
</tr>
<tr>
<td>Всего</td>
<td>4</td>
<td>209</td>
<td>2</td>
<td>15</td>
<td>12</td>
<td>2</td>
<td>36</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>304</td>
<td></td>
</tr>
</tbody>
</table>

Конкурс детских карт мира — это инициатива Международной картографической ассоциации (МКА). Он проводится в память Барбары Печеник, предыдущего вице-президента МКА, которая уже ушла из жизни. В Индонезии Глава Национального координационного агентства геодезии и картографии (BAKOSURFANAL) профессор Джакуб основал Национальный комитет, который в его возглавил. В этот комитет вошли эксперты-представители, т.ч. профессор И. Мади Фазилди (Университет Индонезии) и профессор Р. Сутано (Университет Гаджа Мада). В задачи входил отбор рисунков индонезийских детей для участия в международном конкурсе в рамках 16-й ассамблеи Международной картографической ассоциации в Кёльне (Германия) 3-9 мая 1993. Из приблизительно 300 рисунков 10 были выбраны национальными победителями. Эти 10 рисунков были представлены на международный конкурс Международной картографической ассоциации во Францию, где уже сравнивались с другими работами из 28 стран. В тот момент карта мира, созданная Триеди Октианто, учеником начальной школы, и стала признана победившей, представляя картографический рисунок детей из Индонезии. Позже рисунок Триеди был удостоен поздравления UNICEF в 1995. Кроме того, его рисунок отмечен почетной грамотой и денежным призом BAKOSURFANAL. И еще в честь 25-й годовщины BAKOSURFANAL была выпущена почтовая марка с рисунком Триеди, которая сейчас хранится в музее Марок в Джакарте (Stamp Museum in Taman Mini Indonesia Indah (TMII)). Также карта Триеди Октианто была опубликована на обложке научно-популярного журнала Геоинформатика (том 1, № 3, Февраль 1994), издаваемого Национальным координационным центром геодезии и картографии (BAKOSURFANAL).

Десять лет спустя BAKOSURFANAL провел этот конкурс более профессионально, увеличил и число участников. Число карт, полученных комитетом и ставших участниками, составило 1070 в 2003 г, 1002 в 2005 г. и 1377 в 2007 г.

ВЫВОДЫ
1. Для индонезийского ребёнка, такового, как Триеди, ощущение мира и созданная рисунок будут основаны на окружающей его среде, включа в том числе и жизнь его семьи, и даже религию. Все это он сумел отразить на своем картографическом рисунке.
2. Размещение Каабы в центре рисунка и жесты приветствия рукой (‘lambaian tangan’), которыми обмениваются жители каждой страны – это все указывает на особенную духовность рисунка. Этот рисунок, конечно, будет мотивировать молодежь больше узнавать о картах и географии, в то время как Кааба и жест руки являются двумя символами мира и имеют значения международного понимания и уважения друг друга.
3. В конечном итоге, Триеди Октианто смог выразить свои надежды относительно мира во всем мире через свой картографический рисунок. Он понял, каким образом можно через карту донести свое сообщение, свою информацию до других людей.

ЛИТЕРАТУРА
2. http://www.bakosuratang.go.id
Abstract. The scientific meaning of N.K.Rerih’s expeditions is significant both for scientists and for people interested in world history and culture. The article focuses on the creation of maps Rerih’s expeditions edited for further publishing as an atlas. The aspects of the work on these maps are described. Presently there are designed sever maps, e.g. “Central Asian Expedition of N.K. Rerih”, tourist maps and landscape maps on the territories where the expeditions were held.”

Научное значение экспедиций Н. К. Рериха представляет на сегодняшний день большой интерес как для ученых, так и для широкого круга людей, интересующихся мировой историей и культурой. Несмотря на это, имеющиеся картографические материалы по экспедициям разрознены и не сведения в единую систему. Картировочное обеспечение экспедиций Рериха, выполненное в виде единого издания, позволило бы дать наглядное представление о географии, целях, задачах, истории и итогах экспедиций.

Ниццола Константинович Рерих относится к плеяде выдающихся деятелей русской и мировой культуры. Художник, ученый, путешественник, общественный деятель, писатель, мыслитель. Его влекли живопись, археология, история и, прежде всего, богатейшее культурное наследие Востока.

В 1903-1904 гг. Н. К. Рерих вместе с женой совершает путешествие по древнерусским городам России с целью изучения истоков русской культуры. Они побывали более чем в сорока российских городах, известных выдающимися древними памятниками. Результатом путешествия стала не только большая серия картин художника, но и статьи Н. К. Рериха, в которых он одним из первых поднял вопрос об огромной художественной ценности древнерусской иконописи и архитектуры.

В 2 декабря 1923 года Н. К. Рерих и его семья прибывают в Индию. Здесь начинается подготовка к экспедиции по труднодоступным районам Центральной Азии. Эти районы давно привлекали внимание Н. К. Рериха не только как художника, но и как ученого, которому интересовал ряд проблем, связанных с миграциями древних народов и поиском общего источника славянской и индийской культур. Сложнейший маршрут экспедиции проходил через Синхим, Кашмир, Ладак, Китай (Синьцзян), Россию (с заседом в Москве), Сибирь, Алтай, Монголию, Тибет, по неизученным областям Трансгималаев. Значение и результаты этой уникальной экспедиции до сих пор до достойно не оценены современной географической наукой. А между тем, осуществив мечту Пражевальского и Козлова, экспедиция Николая Константиновича Рериха явилась триумфом русских исследований Центральной Азии. По уникальности маршрута и собраным материалам она по праву может претендовать на особое место среди крупнейших экспедиций ХХ века. Путешествие продолжалось с марта 1925 по май 1928 года. Впервые на картах были отмечены десятки новых горных вершин и перевалов, открытые археологические памятники, найдены редчайшие манускрипты. В. Собранный огромный научный материал, который лег в основу книга «Сердце Азии» и «Алтай — Гималаи». Рерихом написано около пятисот картин, на которых художник увековечил удивительный мир востока.

В 1934-1935 годах Николай Константинович Рерих возглавляет экспедицию в районы Внутренней Монголии, Маньчжурии и Китая, организованную Министерством земледелия США с целью изучения засухоустойчивых растений.

Значение экспедиций Рериха необычайно велико, но многие их аспекты еще до конца не исследованы. Во многом пониманию географии экспедиций должно способствовать их надлежащее картографическое отображение. К сожалению, на данный момент специализированных карт, посвященных экспедициям, не имеется в хранилищах, музеях и печатных изданиях карты зачастую схематичны, особенно если речь идет об их тематической нагрузке (рис. 1, 2). Все это отрицательно сказывается на восприятии заложенной в картах информации, особенно людьми, не знакомыми ранее с данной темой.
Рис. 1. Основные маршруты Центрально-Азиатской экспедиции Рериха (1923-1928 гг.) по Индии, Монголии, Тибету
Настала пора глубокого изучения, осмысления материалов, научных открытий и получения практических результатов этих уникальных по своим масштабам и задачам путешествий мировой научной и культурной общественностью [Зоммер и др., 2006].

При разработке картографического обеспечения отображения экспедиций необходимо, прежде всего, определить круг потенциальных читателей. Это могут быть как специалисты в данной области, так и широкий круг людей, впервые заинтересовавшихся темой. К картам, предназначенным для широкого круга читателей, предъявляются особые требования по наглядности и легкости восприятия информации, что требует большой работы над их содержанием и оформлением [Скворцов, Иванова, 2002]. Наглядное и выразительное отображение общегеографической основы и тематического содержания позволит пользователю реже обращаться к легенде.

Кроме того, необходимо решить, будут ли это отдельные карты в рамках иллюстрированного печатного издания или есть необходимость в разработке атласа экспедиций Рериха.

Разработка содержания и оформления карт экспедиций: технологический и изобразительный аспекты

Проектирование карт экспедиций Рериха базируется на богатом опыте составления и оформления различных типов карт в Московском государственном университете геодезии и картографии, в частности, на школе художественного оформления картографических произведений, родоначальником которой является Петр Алексеевич Скворцов. К настоящему моменту уже разработана карта Центрально-Азиатской экспедиции Н. К. Рериха, а также туристские и ландшафтные карты на территорию, по которой проходили экспедиции Рериха, к примеру, дипломная работа «Ландшафтная карта Китая» Лилии Фетисовой 2011 года (рис. 3).

Составление проектируемых карт ведется с использованием ГИС-продуктов, художественное оформление – в графических программах (наприимер, Adobe Photoshop).

Для целей составления основы карты Центрально-Азиатской экспедиции Н. К. Рериха была выбрана программа Global Mapper v 9.0 как отвечающая всем требованиям к точности и полноте содержания. В этой программе были использованы цифровая модель Земли (рис. 1), цифровые базы данных рек, озер,
геоинформационное обеспечение устойчивого развития территорий и ГИС-проекты

населенных пунктов, дорог и политических границ на 1920-й год, а также космический снимок (рис. 5, 6) и текстуры растительного покрова и грунтов.

Необходимо отметить, что цифровая модель Земли и космические снимки могут быть использованы как самостоятельно, так и в комбинации друг с другом. Текстуры растительного покрова и грунтов также представлены набором слоев, которые используются выборочно в той комбинации, которая необходима для выполнения данной конкретной задачи.

Рис. 3. Ландшафтная карта Китая, разработанная на факультете картографии и геоинформатики МИИГАиК.
Автор: Фетисова Л. И. Руководитель: Ковалева О. В. 2011 г.

Художественное оформление карт представляет собой ландшафтное оформление картографируемой территории с использованием графических программ. Параллельно решаются задачи изобразительного характера. Первая из них — на плоские участки картографируемой территории наносятся текстуры космических снимков, включающие в себя изображение мелких форм рельефа, не выражаемых способом теневой пластикой, а также растительного покрова и грунтов. Вторая задача — интерактивная доработка главных горных хребтов на Азиатской части территории с целью придания рельефу лучшей читаемости и выразительности. Третья задача — цветовое решение основы, поскольку в программе Global Mapper v9.0 теневые склоны гор передаются утениемением исходной гипсометрической шкалы, что недостаточно для целей художественного оформления карт.

При разработке художественного оформления рельефа были рассмотрены различные цветовые решения. При этом целью стало как эстетичность восприятия изображения в целом, так и стремление создать карту в цветовых сочетаниях, наиболее часто использованных Н. К. Рерихом в живописных работах. Проведенный анализ показал, что это — яркие чистые цвета красно-оранжевой и синей гаммы. Так как
ГЕОИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УСТОЙЧИВОГО РАЗВИТИЯ ТЕРРИТОРИЙ И ГИС-ПРОЕКТЫ

Рис. 4. Визуализированная цифровая модель картографируемой территории в проекции Ламберта

Рис. 5. Космический снимок картографируемой территории

Рис. 6. Фрагмент космического снимка в масштабе карты
красный цвет неприемлем для оформления картографической основы, поскольку не может на тематической карте выглядеть «вторым планом», было принято решение использовать для основы синюю цветовую гамму (оттенки голубого, синего и фиолетового тонов). Для показа тематической нагрузки (маршрутов экспедиции, остановок и др.) нами были использованы цвета красно-оранжевой гаммы (рис. 7).

В настоящее время работа над созданием карт экспедиций продолжается. В ней принимают участие как картографы МИИГАиК, так и ученые музея Рериха в Москве.
ГЕОИНФОРМАЦИОННАЯ СИСТЕМА МЕТЕО

Калинин Н.А., Смирнова А.А.
Пермский государственный национальный исследовательский университет
Пермь, Россия

GEOINFORMATION SYSTEM METEO

Kalinin N.A., Smirnova A.A.
Perm State National Research University
Perm, Russia

Abstract. Meteorological services are widely using GIS technologies for their needs. This article focuses on such a specialized GIS — GIS METEO used in Russia. The work on it has started in the end of 80s and now it is a powerful tool for creating operative maps, monitoring of the environment, making weather forecasts at different scales. It is used by meteorologists, oceanologists, hydrologists in universities and specialized institutes, airports etc.

На гидрометеорологической сети широко используется геоинформационная система ГИС Метео. ГИС Метео — специализированная геоинформационная система, которая представляет собой интерактивный и работающий в режиме реального времени инструмент, предназначенный для использования в оперативной работе метеорологов. Разработка ГИС Метео началась в конце 80-х годов прошлого века научно-производственным центром Метеоргидромет (Россия). В 1990 году разработчики установили первую версию под управлением Windows 2.03 на персональном компьютере в Центре по гидрометеорологии Южно-Сахалинска, где система благополучно прошла апробацию в оперативных условиях работы.

Сейчас программный комплекс ГИС Метео — это универсальный инструмент метеоролога, служащий для изготовления, обработки и документирования метеорологических карт. Комплекс ГИС Метео предназначен для организации оперативной работы не только синоптиков, но и метеорологов, гидрологов, агрометеорологов. Он позволяет создавать метеорологические карты в любой картографической проекции и любого масштаба. Система ГИС Метео сертифицирована в Федеральной службе по гидромeteorологии — Росгидромете — и в настоящее время практически все Управления и Центры по гидрометеорологии и мониторингу окружающей среды, а также метеослужбы крупных аэропортов, используют ГИС Метео. Программные средства ГИС Метео установлены и в вузах, осуществляющих подготовку специалистов для гидрометеорологии, и активно используются при обучении студентов навыкам обработки и представления метеорологической информации и прогноза погоды.

Программный комплекс ГИС Метео состоит из геоинформационной системы, ее различных компонент, метеорологической базы данных, отдельных приложений, а также из многочисленных технологических средств сбора и распространения данных. ГИС Метео позволяет организовать с малым штатом сотрудников высокоэффективную технологию оперативного гидрометеорологического обеспечения при очень малых затратах на ее эксплуатацию.

ГЕОИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УСТОЙЧИВОГО РАЗВИТИЯ ТЕРРИТОРИЙ И ГИС-ПРОЕКТЫ
VISUALIZATION TOOL FOR THE WORLD OCEAN SURFACE CURRENTS

Nikitin O., Kasyanov S.
State Institute of Oceanography
Moscow, Russia

Fortran-based software for the world ocean surface currents visualization functioning on the OS Windows platform has been developed. The software works with the global interpolated drifting buoys data set (1979-2011) from the Global Drifter Program and the global bottom relief two-minute resolution data set (ETOPO2). These data sets loaded in binary form into operative memory of a PC, together with the software compose the world ocean surface currents visualization tool.

The tool allows researches to process data on-line in any region of the world ocean, display data in different visualization forms, calculate currents velocity statistics and save chosen images as graphic files. It provides displays of buoy movement (animation), maps of buoy trajectories, averaged (by prescribed time and space grid intervals) current vector and modulus fields, fields of current mean and eddy kinetic energies and their ratio, current steadiness coefficient and sea surface temperature.

Any trajectory may be selected simply by clicking it on any summary map of trajectories (or by given buoy number). It may then be viewed and analyzed in detail, while graphs of velocity (components, module and vector) and water temperature variations along this trajectory may be displayed.

USE OF MODERN MULTIMEDIA TECHNOLOGIES FOR DISPLAY DYNAMICS OF HISTORICAL PROCESSES (ON THE EXAMPLE OF MULTIMEDIA ATLAS "NOVONIKOLAYEVSK-NOVOSIBIRSK")

Kolesnikov A.A., Sizikova T.S., Komissarova E.V., Lisitzky D.V.
SSGA, Novosibirsk, Russia
E-mail: alexeykw@yandex.ru

Abstract. This report addresses the technological scheme of a creating geographical multimedia products, used technologies, methods displaying of objects for example a multimedia atlas "Novonikolayevsk-Novosibirsk".

65
Развитие технических и программных средств привело к появлениям в России в конце 80-х гг. XX века понятий "мультимедиа", "мультимедиа-продукт", "мультимедиа-технология", "мультимедиа-изображение". На сегодняшний день "мультимедиа" является одним из наиболее перспективных и популярных направлений. Мультимедиа продукты успешно используются в различных информационных, демонстрационных и рекламных целях, внедрение мультимедиа в телекоммуникации стимулировало бурный рост новых применений. Развитие мультимедиа технологий в информационном обществе справедливо сравнивают по значимости с появлением кино в обществе индустриальным. Это бурно развивающаяся информационная технология, проникающая во все сферы человеческой деятельности, в том числе и картографию. Именно мультимедийные средства расширили объем воспринимаемой картографической информации, включающий новые формы: видео, звук, анимация и ссылки к Интернет и другим ресурсам.

Использование мультимедиа при создании карт и атласов дает возможность создавать привлекательные и легко воспринимаемые пользователями произведения, с использованием графики, анимации, фото, видео, звука, текста, интерактивного режима работы. Всё вместе это создает интегрированную информационную среду и новый вид представления информации, в которой потребитель обретает качество: новые возможности и максимально полно получает конечную картографическую информацию. На современном этапе развития картографии применяют мультимедийные средства наряду с традиционными и компьютерными методами картографирования, изобразительными средствами. Применение сочетания речи диктора, музыки, звуковых эффектов, видео, анимации на карте зрительно повышает объем информации (например, условные знаки на карте могут быть не только статичными, но и динамическими).

Использование мультимедийных средств совместно с традиционными картографическими материалами создает единую информационную среду и позволяет всесторонне рассмотреть картографируемую территорию, отдельный объект или явление, позволяет увеличить объем информации и максимально полно довести эту информацию до потребителя. Методы использования традиционных картографических материалов в мультимедийных атласах на данный момент могут быть очень разнообразны вследствие большого количества форматов растровых и векторных данных и различий программного обеспечения. Основным материалом для создания мультимедийных картографических произведений обычно являются традиционные картографические материалы в виде бумажных оригиналдов, диапозитивов, растровых изображений, векторных карт и т.п. При создании мультимедийных картографических произведений очень важно учитывать область их применения и дальнейшего распространения. От этого зависит итоговые объемы, которых необходимо придерживаться, чтобы пользователь мог без длительного ожидания осуществлять просмотр, если производиться распространение через Интернет.

Мультимедийные массивы картографического изображения в виде фотографии, текста, звукового сопровождения, анимации, видеосюжета и т.д. соединены между собой системой перекрестных гиперссылок. Гиперфайловый способ в картографическом изображении дает возможность пользователю осуществить важнейший системный принцип – движение "от общего к частному", гибкий и оперативный поиск, визуализацию картографической информации.

При создании традиционных картографических произведений всегда возникает желание, как можно полнее дать информацию об объектах и явлениях, но при этом не перегрузить картографическое изображение ненужной информацией, которая отвлекает внимание пользователя от главного. При создании картографических произведений с применением мультимедийных средств таких противоречий не возникает, поскольку гиперфайловый принцип просмотра информации картографического изображения позволяет пользователю продвигаться вглубь от общего к частному по индивидуальному поиску и/или выбору информации, а также в дополнительную информацию к Интернет и другим ресурсам.

Если представлено несколько карт одной территории, отображающей различные временные периоды, то логичным является применение временной шкалы, позволяющей наглядно отобразить развитие во времени и произвести визуальную оценку изменений. Шкалу разбивают на отдельные отрезки, обычно отображающее одинаковые временные интервалы, также на ней могут быть нанесены метки ключевых событий, которые позволяют перейти к фрагменту нужной карты.

При создании мультимедийного атласа необходимо учесть особенности способа его воспроизведения на определенной аппаратной платформе, а также необходимо выбрать модель представления данных, которая должна отвечать следующим требованиям:
- наглядности представления информации;
- простоте ввода и получения информации;
ГЕОИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УСТОЙЧИВОГО РАЗВИТИЯ ТЕРРИТОРИЙ И ГИС-ПРОЕКТЫ

- удобству поиска, просмотра и отбора информации;
- возможности использования информации из других программных продуктов;
- возможности оперативного обновления атласа;
- обладать дружественным интерфейсом, обеспечивающим интерактивный режим.

Главный показатель целостности атласа — полнота его содержания и внутреннее единство. Атлас полон, если в нём получили необходимое и достаточное освещение тема и её аспекты, объекты картографирования и их части в соответствии с назначением и тематикой атласа. Атлас обладает внутренним единством, если карты в нем взаимодополняют друг друга, согласованы и представлены в удобном для сопоставления и совместного изучения виде.

Структура мультимедийного атласа, как картографического произведения, должна быть достаточно четко определена. Главные структурные вопросы для любого атласа заключаются в последовательности размещения разделов карт и карт в каждом разделе.

При проектировании и разработке мультимедийного атласа одним из важнейших этапов является разработка системы визуализации атласа. К системе визуализации можно отнести: анимацию, трехмерные модели местности, фото, ортофотопланы, анаглифы, видеоматериал. Система визуализации должна давать возможность пользователю ознакомиться с территорией с использованием технологий виртуальной реальности.

В технологиях виртуального моделирования большую роль играет анимационное картографирование, которое представляет собой одну из ветвей оперативного компьютерного картографирования. Картографические анимации как бы ее оживляют и создают эффект приближения к действительности. Самым главным достоинством анимаций является визуализация динамических процессов: развития городов, природы и общества, которую фактически сложно или даже невозможно воспроизвести на бумажной карте.

На кафедре картографии и геоинформатики СГГА был создан макет мультимедийного атласа «Новониколаевск-Новосибирск», отображающий историю развития города Новосибирска. Проектируемый географический мультимедийный атлас служит примером реализации разработанной на кафедре методики. Атлас предназначен для изучения истории развития города Новосибирска широким кругом пользователей (рис. 1).

Атлас может использоваться как справочное пособие для анализа исторических процессов, этапов формирования и заселения территории города Новосибирска. Он отображает исторические события, он прост в использовании, удобен, наглядно отображает необходимую информацию; содержит необходимые данные для изучения и анализа развития города.

Потребителями данного картографического произведения являются: простые бывалители, желающие ознакомиться с историей родного города, а также общеобразовательные школы, краеведческие музеи.
Создание мультимедийного атласа Новосибирска было направлено на обобщение информации и знаний об городе (истории развития, населении, архитектурных объектах, наследии, а также предпосылках и перспективах развития) и представление их в удобной для работы и распространения форме, в том числе и в среде Интернет. Весь массив информации, содержащийся в мультимедийном атласе, может служить источником для получения знаний о Новосибирске.

Создание мультимедийного атласа основывалось на методах и методиках построения мультимедийных произведений в геоинформационном картографировании. Техническое обеспечение создания атласа составили ряд программных продуктов различного направления:

– мультимедийные программные продукты для преобразования материала, оцифровки карт и создания мультимедийного атласа: Flash, Fireworks, Director компании Adobe;
– графические редакторы для обработки фотографического и других материалов (Adobe Photoshop компании Adobe) и для составления карт (CorelDraw компании Corel Corporation);
– программа для обработки и преобразования видео и звукового материала Adobe After Effects CS3.

Содержание и сценарий мультимедийного атласа Новосибирска можно представить в виде следующей структурной схемы (рис. 2).

Одной из составляющих атласа является фильм-презентация, который позволяет посмотреть последовательно все разделы как единый фильм, с плавными переходами между анимационными картами различных годов. Он состоит из основных разделов, разделенных видео-фрагментами с дополнительной информацией в виде текста, фотографий, звукового сопровождения и т.д. В анимационных картах, показана застройка города в хронологическом порядке, подписаны основные здания, время постройки, главный архитектор и другая дополнительная информация (рис. 3-4).

Дополнительная информация просматривается с помощью переходов между разделами атласа, основанных на гиперфайловом принципе. В каждом разделе атласа присутствуют «всплывающие» окна, которые отображают пояснения к указанным объектам.

Исходя из опыта создания мультимедийного атласа «Новониколаевск - Новосибирск» процесс разработки должен состоять из следующей последовательности этапов:

I этап. Разработка проекта географического мультимедийного атласа (ГМА). Постановка задачи. Задание атласа включает объяснительную записку и предъявляемые требования.

II этап. Разработка сценария географического мультимедийного атласа. Этот этап является важным подготовительным этапом процесса создания. Сценарий атласа разрабатывается согласно названию, назначению, предъявляемым требованиям и области его применения.
На этом этапе создается шаблон атласа с иерархией слоев и стилей. Эти документы проходят стадию согласования и утверждения.

III этап. Разработка (или выбор) комплекса программных средств. После разработки сценария и создания модели определяются программные продукты для реализации проекта. При разработке комплекса программных средств используется стандартное и специальное программное обеспечение.

После выбора программных средств выбирается форма представления информации и инструменты для ее реализации.

IV этап. Редакционно-подготовительные и составительско-оформительские работы. После анализа возможностей выбранных программных продуктов, можно приступить к реализации ГМА на компьютере. В процессе ее предстоит пройти две стадии:

1. подготовка материала к работе;
2. тестирование компьютерной модели атласа на базе подготовленного материала и выбранных программных средств.

V этап. Составление, создание и изготовление ГМА включает в себя:
ГЕОИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УСТОЙЧИВОГО РАЗВИТИЯ ТЕРРИТОРИЙ И ГИС-ПРОЕКТЫ

- составление компьютерного оригинала атласа;
- принтерную распечатку карт (kontrolная) с условными знаками (в статике);
- корректuru карт на бумажной основе и в электронном виде (например, карты с условными знаками в динамике); редакционный просмотр атласа в целом; исправление карт; добавление дополнительной информации; исправление страниц и топологии гиперссылок;
- отладку географического мультимедийного атласа в целом;
- изготовление мастер-диска либо набора файлов для распространения через интернет.

VI этап. Разработка руководства пользователя и тиражирование.

Следование приведенным выше этапам при разработке мультимедийных атласов позволяет лучше организовать, структурировать процесс создания, сократить время, уменьшить вероятность появления ошибок и прочее.

Поскольку подобная продукция комплексно воздействует на различные органы чувств человека, то она помогает восприятию информации. Динамические условные знаки, создающие наглядное пространственное восприятие картографического содержания придают карте художественность и красоту, способствуют увеличению интереса к истории развития города, так как атлас, составленный в интерактивном режиме, является более доходчивым и для неподготовленного пользователя позволяет быстро ориентироваться в картографическом пространстве.

Из всего вышесказанного можно сделать вывод, что внедрение мультимедийных технологий в картографическое производство является эффективным и экономически выгодным, поскольку расширяется ассортимент картографической продукции, повышается ее качество.
IMPROVEMENT OF THE METADATA BASE FOR THE INFRASTRUCTURE OF SPATIAL DATA ON GLACIERS

Aleksandr D. Kitov, Victor M. Plyusnin
V.B. Sochava Institute of Geography SB RAS
Irkutsk, Russia
E-mail: kitov@irigs.irk.ru, plyusnin@irigs.irk.ru

Abstract. A proposed framework of spatial data for the information on the glaciers of Southern Siberia, taking into account the international glaciological database which permits reading metadata and data, reflecting the dynamics of glaciers, the current state, cartographic representation and remote sensing data of these objects.

The existing directories of glaciers do not correspond to the actual representation of data in electronic form. The electronic database (DB) of glaciers in the CIS in format World Glacier Inventory (WGI) [http://www.webgeo.ru/index.php?r=47&id=38], integrated into the international database (World Data Center on Glaciology) [http://www.ngdc.noaa.gov/wdc/usa/glaciology.html], actually reduplicates the information from paper catalogs of the USSR. Undoubtedly, this first step is necessary and useful, but it requires further development in the sense of spatial data infrastructure (SDI), taking into account contemporary research using remote sensing (RS), development of Internet and geoportals GIS-technologies and GPS-metering.

As is known, the structure of existing database is as follows (20 fields): the code of the glacier, name, latitude, longitude, year of publication of the topographical map, available aerial photography, aerial photography date, total area of the glacier, the accuracy of its determination, the area of the open part, the area of the ablation zone, length, length of the open part, exposition of the accumulation zone, exposition of the ablation zone, the highest point, the average height, the lowest point, the lowest point of the open part, classification [http://www.webgeo.ru/index.php?r=47&id=38]. A glacier has a unique index code. Therefore, leaving the main line of the database unchanged by the code, we can bind additional fields (Fig. 1), specifying the characteristics of existing glaciers, or introducing a new line (a new glacier) according to certain rules.

"The line from the original database" (code and characteristics) - is developed in the Institute of Geography RAS under the leadership of Academician V.M. Kotlyakov and transferred to the WGI [http://www.webgeo.ru/index.php?r=47&id=38].

"Improved attributes" will more accurately indicate the coordinates of the center of the glacier, the name of the glacier, to clarify some details, or add some values if they were not known at the time when the source directory was worked out. The attributes "References to graphical objects" will show a glacier in geoportal according to the appropriate link, for example, Google Earth (format kml), as well as the current map-type, stage of change over the years, visualizing remote sensing data and other graphical presentations and diagrams.

"Attributes and expansion links" are the results of recent studies that show the current state of the glaciers, the reconstructed data, dynamics and forecasts of nival-glacial geosystems and other.

There are attempts to display information about the glaciers in Google Earth at the present time[3], but they are based on the WGI data, which, unfortunately, contain errors. As exemplified by the label of the glacier 29 in the
area of Munch-Sardyk (Eastern Sayan) is displayed on the site of Peretolchin glacier, and the labels of Peretolchin and Radde glaciers are shown further east with the same coordinates, although they are located at a distance of nearly 3 km.

![Fig. 1. The structure of the database directory of the glaciers](image)

A GIS project by applying the software package ArcView-3.x of the glaciers of southern Siberia from Kodar to the Eastern Sayan, including poorly-studied glaciers Barguzin and Baikal ranges [Kitov и др., 2008]. According to contemporary remote sensing data the coordinates, boundaries, area, and other parameters of the glaciers of these areas are specified. In this regard, we propose the following amendments.

In East Sayan, Munku-Sardyk massif and Peretolchin glacier should be divided into two glaciers: the North (in Russia) and the South (in Mongolia) with the coordinates, (51.722, 100.6) and (51.718, 100.602) respectively. It is necessary to increase the number of decimal places from two to three. New glaciers at the Mongolian side are added Babochka (discovered in 2007) and Pogranichniy (marked on the topographical map, but not recorded in the catalog), with the coordinates (51.736, 100.676) and (51.735, 100.538) respectively. Radde glacier has coordinates (51.743, 100.585), the glacier № 29 (Zhoohosky) does not exist according to recent field studies. As far as the classification of glaciers of Mongolia had the index SU, but the new glaciers (southern Peretolchin, Butterfly and Pogranichniy) receive codes: SU5B16201001, SU5B16201002 and SU5B16201003 respectively. Table 1 shows the initial field of a fragment of the elaborated database.

Table. Initial field of a fragment of the elaborated database

<table>
<thead>
<tr>
<th>Code</th>
<th>Glacier name</th>
<th>Lat</th>
<th>Long</th>
<th>Topo year</th>
<th>Photo type</th>
<th>Photo year</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU5B16201027</td>
<td>27</td>
<td>51,80</td>
<td>99,47</td>
<td>-99</td>
<td>N/A</td>
<td>-99</td>
</tr>
<tr>
<td>SU5B16201028</td>
<td>28</td>
<td>51,97</td>
<td>99,53</td>
<td>-99</td>
<td>N/A</td>
<td>-99</td>
</tr>
<tr>
<td>SU5B16201029</td>
<td>29</td>
<td>51,72</td>
<td>100,60</td>
<td>-99</td>
<td>N/A</td>
<td>-99</td>
</tr>
<tr>
<td>SU5B16201030</td>
<td>RADDE</td>
<td>51,743</td>
<td>100,584</td>
<td>1962</td>
<td>QB</td>
<td>2006</td>
</tr>
<tr>
<td>SU5B16201031</td>
<td>PERETOLCHINA</td>
<td>51,723</td>
<td>100,600</td>
<td>1962</td>
<td>QB</td>
<td>2006</td>
</tr>
<tr>
<td>SU5B16201001</td>
<td>PERETOLCHINAS</td>
<td>51,718</td>
<td>100,602</td>
<td>1962</td>
<td>QB</td>
<td>2006</td>
</tr>
<tr>
<td>SU5B16201002</td>
<td>BABOCHKA</td>
<td>51,737</td>
<td>100,575</td>
<td>-99</td>
<td>QB</td>
<td>2006</td>
</tr>
<tr>
<td>SU5B16201003</td>
<td>POGRANICHNIY</td>
<td>51,737</td>
<td>100,538</td>
<td>1962</td>
<td>QB</td>
<td>2006</td>
</tr>
</tbody>
</table>

In the field «Glacier name» the north Peretolchin glacier is still under the former name and the south one gets its name PeretolchinS. The glaciers numbers 27, 28, 29 retain the old coordinates, as their additional ground research is still required.

The field «Topo year» - the publication date of a topographical map, of an actual application of a glacier onto the topographic maps, remains unchanged. At the same time, there is a new high-resolution satellite imagery, allowing to identify the boundaries of nival-glacial formations and examine their structure in details. Therefore, in the fields «Photo type» and «Photo year» a satellite and the year of the survey are indicated, Quick Bird of the year 2006 with a resolution of 0.61 meter, in this case (see the Table 1.). The value (-99) means that there are no data.

The fields «Total area, Area accuracy» (see the Table 2 - for the glaciers of Munku-Sardyk) are specified with the year of the survey. Under the general area of the Peretolchin glacier we understand the area of a reconstructed glacier, as under the modern moraines the processes last associated with the melting of buried ice stream. The accuracy of determining the area is calculated taking into account the perimeter of the glacier and the spatial resolution QB (0.6 m). It is believed that line of the glacier perimeter is represented in a pixel. The area is calculated in the projection map, the area of the ice surface is a bit larger.
Table 2. Continued Table 1 for the glaciers of Munku-Sardyk

<table>
<thead>
<tr>
<th>Code</th>
<th>Total area</th>
<th>Area accuracy</th>
<th>Area exposed</th>
<th>Area ablation</th>
<th>Max length</th>
<th>Max length ex</th>
<th>Orientation ac</th>
<th>Orientation ab</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU5B16201030</td>
<td>0.1998 (0.3)</td>
<td>1.3% (15-25%)</td>
<td>0.1998 (-99)</td>
<td>0.1998 (-99)</td>
<td>0.783 (0.6)</td>
<td>0.783 (0.6)</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>SU5B16201031</td>
<td>0.925 (0.7)</td>
<td>1.9% (5-10%)</td>
<td>0.3064 (-99)</td>
<td>0.3064 (-99)</td>
<td>1.3 (1.0)</td>
<td>0.805 (1.0)</td>
<td>355</td>
<td>355</td>
</tr>
<tr>
<td>SU5B16201001</td>
<td>0.611 (?)</td>
<td>1.3% (5-10%)</td>
<td>0.151 (?)</td>
<td>0.151 (?)</td>
<td>0.681 (?)</td>
<td>0.53 (?)</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>SU5B16201002</td>
<td>0.018 (?)</td>
<td>4.9% (5-10%)</td>
<td>0.018 (?)</td>
<td>0.018 (?)</td>
<td>0.210 (?)</td>
<td>0.210 (?)</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>SU5B16201003</td>
<td>0.124 (?)</td>
<td>1.6% (?)</td>
<td>0.124 (?)</td>
<td>0.124 (?)</td>
<td>0.569 (?)</td>
<td>0.569 (?)</td>
<td>123</td>
<td>123</td>
</tr>
</tbody>
</table>

Table 2 (continuation)

<table>
<thead>
<tr>
<th>Code</th>
<th>Max elev</th>
<th>Mean elev</th>
<th>Min elev</th>
<th>Min elev ex</th>
<th>Classification</th>
<th>Area ex1</th>
<th>Area ex2</th>
<th>Area ex3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU5B16201030</td>
<td>3198 (?)</td>
<td>3022</td>
<td>2846 (2830)</td>
<td>2846 (2830)</td>
<td>640210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SU5B16201031</td>
<td>3485 (3490)</td>
<td>3236,5</td>
<td>2988 (2910)</td>
<td>2988 (2910)</td>
<td>640210</td>
<td>0.819</td>
<td>0.476</td>
<td>0.306</td>
</tr>
<tr>
<td>SU5B16201001</td>
<td>3476 (3490)</td>
<td>3359,5</td>
<td>3243 (?)</td>
<td>3243 (?)</td>
<td>640210</td>
<td>0.587</td>
<td>0.342</td>
<td>0.151</td>
</tr>
<tr>
<td>SU5B16201002</td>
<td>2940</td>
<td>2900</td>
<td>2860</td>
<td>2860</td>
<td>640210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SU5B16201003</td>
<td>3480</td>
<td>3240</td>
<td>3040</td>
<td>3040</td>
<td>640210</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In parentheses there are the values from the database WGI, where they have changed. The values of (-99) - data are not known for the directory, (?) - no data in the directory.

The fields «Area exposed, Area ablation» (open part of the area and ablation) are defined by modern remote sensing data, and with the help of GPS-symmetry, where possible, and are essentially the same, as in the dirty weather the entire glacier is covered with snow and then melts, without forming the firn line.

The field «Max length» is defined to the edge of a modern terminal moraine, and the length of the open part of the «Max length ex» of the glacier according to the present data.

The fields «Orientation ac, Orientation ab» - the orientation of the relevant parameters is actually saved (the azimuth is indicated from the top of the glacier). The fields «Max elev, Mean elev, Min elev, Min elev ex» - refined based on GPS measurements and digital elevation model (DEM). The field of glacier classification «Classification» is saved.

In the fields «Area ex1, Area ex2, Area ex3» the area of Peretolchin glacier 100 years ago 50 years ago and the modern state is shown, it is possible to follow the dynamics of area changes, according to its northern and southern parts (Fig. 2). The area in the early twentieth century is reconstructed (Fig. 3) according to the analysis of ground photographs, satellite images and diagrams by Peretolchin (Fig. 4). Satellite images and photographs (current and made by Peretolchin) provide a more accurate projection of the primary circuit in the modern topographic map.

Cartographic objects (see Fig. 1) are presented, respectively, in the GIS project and should be rendered in the portal circulation to the glaciers, for example in the following form (see Fig. 3, 4).

The glaciers of the largest glaciations in the Eastern Sayan in the region of Topographers are not studied in detail with ground facilities, but the remote sensing data analysis of Landsat-ETM showed that they decreased significantly, and require refinement of their parameters, including the coordinates in the database WGI.

The glaciers of Barguzin and Baikal ranges have not been studied in detail previously and do not enter into the database WGI. In 2010, the expedition of the IG SB RAS examined Chersky glacier and the nearby Solnechny glacier. There was a trend of glacier reduction, but not as significant as in the massif Munku-Sardyk. Accordingly, the fields Code, GlacierName, Lat, Long, Area total have values (Table 3):

Table 3. Values of fields Chersky and Solnechny glaciers

<table>
<thead>
<tr>
<th>Code</th>
<th>GlacierName</th>
<th>Lat</th>
<th>Long</th>
<th>Area total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU5B16000001</td>
<td>Chersky</td>
<td>55,056</td>
<td>108,698</td>
<td>0.407</td>
</tr>
<tr>
<td>SU5B16000002</td>
<td>Solnechny</td>
<td>55,042</td>
<td>108,699</td>
<td>0.179</td>
</tr>
</tbody>
</table>
Fig. 2. Changes in the open area of the glacier according to the data by Peretolchin (1906), in the middle of last century, according to the topographic maps (1962) and the current status for 2006. N - northern glacier; S - southern glacier. The trend lines show that the rate of melting of the southern glacier are stored and it should melt by the middle of this century, and the rate of melting of northern slow down and it almost will not change in its size by the middle of 21st century, but probably will be reduced in its thickness.

Fig. 3. Change stages of Peretolchin glacier according to the data of 1906, 1962 and 2006.

According to the remote sensing data for half a century the main area of the glacier (Chersky) has decreased from 0.446 to 0.407 square kilometers, i.e. by 8.7%.

In the Barguzin range several glaciers are marked on topographic maps and are deciphered according to the remote sensing data by the Landsat-ETM. They have the same code structure as well as they are located within the sources of the rivers Tampuda and Svetlaya - the tributaries of Lake Baikal (the system of the Yenissei river). The largest from the group of glaciers Tampuda-Svetlaya (Barguzin) has coordinates Lat = 55.455; Long = 110.362. Its area has decreased from 0.271 to 0.18 square kilometers for 50 years, and at the beginning of last century it was probably one of the cliff glaciers in the nearby car.
As a typical glacier of the Kodar ridge Azarovoy glacier has been studied since the middle of century (Fig. 5). The parameters of this glacier in the database WGI also require clarification. The table 4 presents a comparative metadata of Azarovoy glacier.

Dynamics change in the area (Fig. 6) on the trend line says that its reduction slows down and the area must be stabilized by the middle of this century. However, the sharp decrease in ice thickness can affect its weight.

Update of the existing database structure with current indices, parameters for different time stages of the study of nival-glacial sites, including those obtained by remote sensing data, as well as support with geospatial imaging will allow more detailed analysis and forecast changes in mountain landscapes and climate.
Fig. 5. Azarovoy glacier (Kodar ridge). Stage until 1962, 1979, 2007 and 2009

Table 4. Comparative metadata of Azarovoy glacier

<table>
<thead>
<tr>
<th>Code</th>
<th>Glacier name</th>
<th>Lat</th>
<th>Long</th>
<th>Topo year</th>
<th>Photo type</th>
<th>Photo year</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Total area</th>
<th>Area accuracy</th>
<th>Area exposed</th>
<th>Area ablation</th>
<th>Max length</th>
<th>Max length ex</th>
<th>Orientatio n ac</th>
<th>Orientation ab</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU5D17201020</td>
<td>0.45226</td>
<td>0.7% (1%)</td>
<td>0.45226 (-99)</td>
<td>0.45226 (-99)</td>
<td>1.353 (2.0999999)</td>
<td>1.3 (1.89)</td>
<td>358</td>
<td>360</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Max elev</th>
<th>Mean elev</th>
<th>Min elev</th>
<th>Min elev ex</th>
<th>Classificatio n</th>
<th>Area ex1</th>
<th>Area ex2</th>
<th>Area ex3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU5D17201020</td>
<td>2480 (2320)</td>
<td>2312 (2160)</td>
<td>2145 (2000)</td>
<td>2200 (2200)</td>
<td>640110</td>
<td>0.6673</td>
<td>0.5461</td>
<td>0.4522</td>
</tr>
</tbody>
</table>

Fig. 6. Change of the area of Azarovoy glacier for 50 years, according to the topographic map (1962), photomapping (1979), the ERS (EROS-B, 2007) and (QuickBird, 2009)
REFERENCES

УТОЧНЕНИЕ БАЗЫ МЕТАДАННЫХ ДЛЯ ИНФРАСТРУКТУРЫ ПРОСТРАНСТВЕННЫХ ДАННЫХ О ЛЕДНИКАХ

Китов А. Д., Плюсний В. М.
Институт географии им. В. Б. Сочавы СО РАН
Иркутск, Россия
E-mail: kitov@irigs.irk.ru, plyusnin@irigs.irk.ru

Существующие каталоги ледников не соответствуют современному представлению данных в электронном виде. Электронная база данных (БД) ледников СНГ в формате World Glacier Inventory (WGI) [http://www.webgeo.ru/index.php?r=47&id=38], интегрированная в международную БД (World Data Center on Glaciology) [http://www.ngdc.noaa.gov/wdc/usa/glaciology.html], фактически повторяет сведения из бумажных каталгов СССР. Этот первый шаг, несомненно, необходим и полезен, но он требует дальнейшего развития в ключе инфраструктуры пространственных данных (ИПД), с учетом современных исследований на основе дистанционного зондирования Земли (ДЗЗ), развития Интернет и геопорталов, ГИС-технологий и GPS-метрии.

<table>
<thead>
<tr>
<th>Код</th>
<th>Атрибуты</th>
<th>Строка исходной БД</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Код</td>
<td>Уточенные Атрибуты</td>
<td></td>
</tr>
<tr>
<td>Код</td>
<td>Ссылки на графические объекты</td>
<td></td>
</tr>
<tr>
<td>Код</td>
<td>Атрибуты и ссылки расширения</td>
<td></td>
</tr>
</tbody>
</table>

Рис. 1. Структура детализации каталога БД ледников

по соответствующей ссылке ледник в геопортале, например, Google Earth (формат kml), а так же показать текущий картировочный вид, стадии изменения по годам, визуализируя данные ДЗЗ и другие графические представления и схемы.

«Атрибуты и ссылки расширения» представляют результаты последних исследований, отображающие текущее состояние ледников, реконструированные данные, динамику, прогнозы состояния нивально-глациальных геосистем и др.

В настоящее время есть попытки отобразить информацию о ледниках в Google Earth [http://www.westra.ru/reports/glacierinventory.html], но они базируются на данных WGI, которые, к сожалению, содержат ошибки. Так, например, метка ледника 29, в районе Мунку-Сардык (Восточный Саян), отображается на месте ледника Перетолчина, а метки ледников Перетолчина и Радде показаны чуть восточнее с одинаковыми координатами, хотя расположены на расстоянии почти 3 км.

В настоящее время разработан ГИС-проект с использованием пакета программ ArcView-3.x ледников Южной Сибири от Кодара до Восточных Саян, включая почти не изученные ледники Баргузинского и Байкальского хребтов [4]. По современным данным ДЗЗ уточнены координаты, границы, площади и другие параметры ледников этих территорий. В связи с этим предлагаются следующие дополнения.

| Таблица 1. Начальные поля фрагмента уточнённой БД |
Code	Glacier name	Lat	Long	Topo year	Photo type	Photo year
SU5B16201027	27	51,80	99,47	-99	N/A	-99
SU5B16201028	28	51,97	99,53	-99	N/A	-99
SU5B16201029	29	51,72	100,60	-99	N/A	-99
SU5B16201030	RADDE	51,743	100,584	1962	QB	2006
SU5B16201031	PERETOLCHINA	51,723	100,600	1962	QB	2006
SU5B16201001	PERETOLCHINAS	51,718	100,602	1962	QB	2006
SU5B16201002	BABOCHKA	51,737	100,575	-99	QB	2006
SU5B16201003	POGRANICHNIY	51,737	100,538	1962	QB	2006

| Таблица 2. Продолжение таблицы 1 для ледников массива Мунку-Сардык |
Code	Total area	Area accuracy	Area exposed	Area ablation	Max length	Max length ex	Orientation ac	Orientation ab
SU5B16201030	0,1998	1,3%	0,1998	-99	0,783	0,783	33	33
SU5B16201031	0,925	1,9%	0,3064	-99	1,3	0,805	355	355
SU5B16201001	0,611	1,3%	0,151	-99	0,681	0,53	150	150
SU5B16201002	0,018	4,9%	0,018	-99	0,210	0,210	130	130
SU5B16201003	0,124	1,6%	0,124	-99	0,569	0,569	123	123

| Таблица 2 (продолжение) |
Code	Max elev	Mean elev	Min elev	Min elev ex	Classification	Area ex1	Area ex2	Area ex3
SU5B16201030	3198	3022	2846	2846	640210	640210	640210	
SU5B16201031	3485	3236,5	2988	2988	640210	640210	640210	
SU5B16201001	3476	3359,5	3243	3243	640210	640210	640210	
SU5B16201002	2940	2900	2860	2860	640210	640210	640210	
SU5B16201003	3480	3240	3040	3040	640210	640210	640210	

В скобках даны значения из БД WGI, там, где есть изменения. Значение параметра: (-99) – данные не известны по каталогу; (?) – не было данных в каталоге.

В Восточном Саяне, массив Мунку-Сардык ледник Перетолчина разделить на два ледника Северный (в России) и Южный (в Монголии) с координатами соответственно (51.722, 100.6) и (51.718, 100.602). При этом необходимо увеличить число дробных разрядов с двух до трех. Добавляются новые ледники на
Монгольской стороне: «Бабочка» (обнаруженный в 2007 г.) и «Пограничный» (имеющийся на топокартах, но не внесенный в каталог), соответственно с координатами (51.736, 100.676) и (51.735, 100.538). Ледник Радде имеет координаты (51.743, 100.585), ледник №29 (Жохойский) не существует, согласно последним экспедиционным исследованиям. Поскольку классификация ледников Монголии имела индекс SU, но новые ледники (Перетолчина южный, Бабочка и Пограничный) получают коды соответственно: SUSB16201001, SUSB16201002 и SUSB16201003. В табл.1 представлены начальные поля фрагмента уточненной БД.

В поле «Glacier name» Под прежним именем остается северный ледник Перетолчина, а южный получает имя PERETOLCHINAS. Ледники №27, 28, 29 сохраняют прежние координаты, так как еще требуется их дополнительное наземное обследование.

Поле «Топо карты» – год издания топокарты, фактического нанесения ледника на топокарту, остается неизменным. В то же время появились современные космические съемки сверхвысокого разрешения, позволяющие с достаточной детальностью выделить границы навально-тектонических образований и рассмотреть их структуру. Поэтому в полях «Photo type» и «Photo year» указаны спутник и год использованной съемки, в данном случае Quick Bird 2006 года с разрешением 0,61 м. (см. табл. 1). Значение (-99) означает, что данных нет.

Поля «Total area, Area accuracy» (табл. 2 – для ледников массива Мунку-Сардык) уточнены с указанием года обследования. Под общей площадью ледника Перетолчина понимается площадь реконструированного ледника, так как под современными моренами продолжаются процессы, связанные с таянием погребенного языка ледника. Точность определения площади вычислена с учетом периметра ледника и пространственного разрешения QB (0,6 м). Считается, что линия периметра представлена полосой в 1 пиксел. Площадь вычислена в проекции карты, площадь поверхности ледника несколько больше.

Поля «Area exposed, Area ablation» (площадь открытой части и аблиции) определены по современным данным ДЗЗ, а где возможно с помощью GPS-метрии, и фактически одинаковы, так как в ненастную погоду весь ледник покрывается снегом и при оттепели весь тает, не образуя практически фирновой линии.

Поля «Max length» определено до края современной конечной морены, а длина открытой части «Max length ex» ледника по современным данным.

Поля «Orientation ac, Orientation ab» - соответствующие параметры ориентации фактически сохраняются (указан азимут с вершины ледника). Поля «Max elev, Mean elev, Min elev, Min elev ex» - уточнены на основе GPS измерений и цифровой модели рельефа (ЦМР). Поля классификации ледника «Classification» сохраняются.

В полях «Area ex1, Area ex2, Area ex3» показана площадь ледника Перетолчина 100 лет назад, 50 лет и современное состояние, по которому можно проследить динамику изменения площади, соответственно его северной и южной частей (рис. 2). Площадь в начале XX века дана по реконструкции (рис. 3), выполненной по анализу наземных фотоснимков, космоснимков и схемы Перетолчина (рис. 4). Космоснимки и фотоснимки (современные и Перетолчина) позволили уточнить первичную схему в проекции современной топокарты.

Рис. 2. Изменение открытой площади ледника по данным Перетолчина (1906 г.), в середине прошлого века по данным топографических карт (1962 г) и современное состояние на 2006 г. N – северный ледник; S – южный ледник. Линии тренда показывают, что темпы таяния южного ледника сохраняются и к середине этого века он должен стать, а северного замедляются и к середине XXI в он почти не изменится по площади, но, вероятно, сильно уменьшится в толщину

79

Рис. 4. Исходная схема ледника Перетолчина в 1906 г. [Перетолчин, 1908]
Картографические объекты (см. рис. 1) соответственно представлены в ГИС-проекте и должны визуализироваться при обращении к портalu ледников, например, в таком виде (см. рис. 3, 4).

Ледники наиболее крупного оледенения Восточного Саяна в районе пика Топографов нами детально наземными средствами не изучались, но дистанционный анализ по данным ДЗЗ Landsat-ETM показал, что они существенно сократились, и требуется уточнение их параметров, в том числе координат в БД WGI.

Ледники Байкальского и Баргузинского хребтов ранее детально не изучались и отсутствуют в БД WGI. В 2010 г. экспедицией ИГ СО РАН были обследованы ледник Черского и соседний ледник Солнечный. Отмечена тенденция уменьшения ледников, но не столь существенная, как в массиве Мунку-Сардык. Соответственно поля Code, GlacierName, Lat, Long, Area total имеют значения (табл. 3):

<table>
<thead>
<tr>
<th>Поля</th>
<th>Значения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>SU5B16000001, SU5B16000002</td>
</tr>
<tr>
<td>GlacierName</td>
<td>Cherskogo, Solnechniy</td>
</tr>
<tr>
<td>Lat</td>
<td>55,056, 55,042</td>
</tr>
<tr>
<td>Area total</td>
<td>0,407, 0,179</td>
</tr>
</tbody>
</table>

По данным ДЗЗ за полвека площадь основного ледника (Черского) уменьшилась с 0,446 до 0,407 кв.км, т.е на 8,7%.

В Баргузинском хребте отмечено на топокартах и дешифрируются по данным ДЗЗ Landsat-ETM несколько ледников. Они имеют ту же кодовую структуру, так как расположены в истоках рек Тампуда и Светлой притоков оз. Байкал (система Енисея). Наибольший из группы ледников Тампуды-Светлой (Баргузин) имеет координаты Lat = 55,455; Long = 110,362. Его площадь за 50 лет уменьшилась с 0,271 до 0,18 кв.км, а в начале прошлого века он вероятно был единым переметным ледником в соседнем крае.

В качестве типичного ледника хребта Кодар изучался с середины прошлого века ледник Азаровой (рис. 5). Параметры этого ледника в БД WGI так же требуют уточнений. В табл. 4 представлены сравнительные метаданные ледника Азаровой.

Динамика изменения площади (рис. 6) по линии тренда говорит, что его сокращение замедляется и к середине текущего века площадь должна стабилизироваться. Однако резкое уменьшение толщины ледника может повлиять на его массу.
Таблица 4. Сравнительные метаданные ледника Азаровой

<table>
<thead>
<tr>
<th>Code</th>
<th>Glacier name</th>
<th>Lat</th>
<th>Long</th>
<th>Topo year</th>
<th>Photo type</th>
<th>Photo year</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU5D17201020</td>
<td>AZAROVOI</td>
<td>56,888</td>
<td>117,578</td>
<td>-99</td>
<td>EROS, QB</td>
<td>2007, 2009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Glacier name</th>
<th>Total area</th>
<th>Area accuracy</th>
<th>Area exposed</th>
<th>Area ablation</th>
<th>Max length</th>
<th>Max length ex</th>
<th>Orientatio n ac</th>
<th>Orientation ab</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU5D17201020</td>
<td></td>
<td>0,45226 (1,3)</td>
<td>0,7% (1%)</td>
<td>0,45226 (99)</td>
<td>0,45226 (99)</td>
<td>1,353 (2,0999999)</td>
<td>1, 3 (1,89)</td>
<td>358</td>
<td>360</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Max elev</th>
<th>Mean elev</th>
<th>Min elev</th>
<th>Min elev ex</th>
<th>Classificatio n</th>
<th>Area ex1</th>
<th>Area ex2</th>
<th>Area ex3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU5D17201020</td>
<td>2480 (2320)</td>
<td>2312 (2160)</td>
<td>2145 (2000)</td>
<td>2200 (2200)</td>
<td>640110</td>
<td>0,6673</td>
<td>0,5461</td>
<td>0,4522</td>
</tr>
</tbody>
</table>

Рис. 6. Изменение площади ледника Азаровой за 50 лет по данным топокарты (1962 г.), фототеодолитной съемки (1979 г.), по ДЗЗ (EROS-B, 2007 г. и (QuickBird, 2009 г.).

Дополнение существующей структуры базы данных современными уточненными показателями, параметрами на различных временных стадиях изучения интально-гляциальных объектов, в том числе полученных по данным ДЗЗ, а также сопровождение картировочными изображениями позволит более детально анализировать и прогнозировать изменение горных ландшафтов и климата.

ЛИТЕРАТУРА

5. Перетолчин С.П. Ледники хребта Мунку-Сардык.– Томск: Типо-литография Сиб. Печатного Дела, 1908.– 60 с.
ИНФРАСТРУКТУРА ПРОСТРАНСТВЕННЫХ ДАННЫХ «ЭТНО»

Душнюк Н.А.
Московский Государственный университет имени М.В.Ломоносова
Москва, Россия
E-mail: nikus2009@gmail.com

Abstract. The review of SDI «Ethno» is done. The structure is shown, mainframes are described.

В настоящее время проблемы этнического взаимодействия привлекают к себе всё большее внимание. Связано это с глобализацией, экономическим кризисом, крахом мультикультурализма в Европе.

Глобализация тесно связана с антиглобализацией: усиление первой неизменно ведёт к усилению второй, объединяющие процессы компенсируются процессами обособления. Экономический кризис привёл к тому, что бедные стали ещё беднее. Уровень социальной, как следствие этнической, стабильности снизился.

Крах мультикультурализма в Европе не является общепризнанным фактом, но он является широкообсуждаемым, что создаёт информационный фон, который снижает этническую стабильность.

В этой связи, необходим мониторинг этнических процессов. Эффективным решением является инфраструктура пространственных данных «Этно», структура которой представлена на рис.1.

Рис.1. Структура ИПД «Этно»

ИПД «Этно» также соответствует европейскому стандарту INSPIRE [Directive.., 2007], который трактует ИПД как: метаданные, наборы пространственных данных, сетевые сервисы и технологии, соглашения на совместное использование, координирующие и отслеживающие механизмы, процедуры и процедуры, управляемый в соответствии с директивой INSPIRE.

Основными блоками ИПД «Этно» являются геопортал «Этно», сервера обработки данных под управлением ArcGIS server, каталоги баз геоданных работающих под СУБД «MySQL».

Геопортал «Этно» является точкой входа в систему серверов, содержащих этнические данные. Согласно директиве INSPIRE он предоставляет сервисы нескольких основных групп:

- сервисы поиска, позволяющие находить и отражать необходимую пользователю информацию.
- сервисы просмотра, содержащие минимальный набор инструментов по навигации, масштабированию, прокрутке, отображению оверлея пространственных данных, легенды информации и метаданных.
- сервисы скачивания, допускающие копирование пространственных данных или их частей. С обесячение прямого доступа по возможности.
- сервисы трансформации данных с целью достижения их большей функциональности.
- сервисы позволяющие задействовать другие сервисы, связанные с пространственными данными.

Серверы обработки данных под управлением ArcGIS server позволяют обрабатывать пользовательские запросы, формируемые на геопортале, осуществляют связь с базой данных.

ИПД «Этно» позволяет оперативно и эффективно работать с данными этнической тематики: осуществлять синтез собственных интегральных этнических показателей на основе БД, выполнять их визуализацию, сопоставлять результаты с уже построенными картами, имея доступ к экспертному аналитическому блоку.

С точки зрения организации процесса обработки этнической информации, ИПД «Этно» позволяет сделать мониторинг этнической ситуации централизованным. Поэтому весьма перспективным является включение ИПД «Этно» в разрабатываемую в настоящий момент инфраструктуру пространственных данных России (РИПД).

ЛИТЕРАТУРА

ВЫБОР ВРЕМЕННЫХ ИНТЕРВАЛОВ И КОМПЛЕКСИРОВАНИЕ ИНФОРМАЦИИ ИЗ БАЗ ДАННЫХ ДЛЯ СОЗДАНИЯ КЛИМАТИЧЕСКИХ КАРТ

Е.А. Божилина, А.К. Суворов

Географический факультет
Московский Государственный университет имени М.В. Ломоносова
ОАО «Газпром космические системы»
E-mail: bozilina @ mail.ru, suvorov@gazprom-spaceystems.ru

CHOICE OF TIME INTERVALS AND INTEGRATION INFORMATION FROM DATABASES FOR CREATION OF CLIMATIC MAPS

E.A. Bozilina, A.K. Suvorov

Geographical Faculty
M.V.Lomonosov Moscow State University
Open Society «Gazprom space systems»
E-mail: bozilina @ mail.ru, suvorov@gazprom-spaceystems.ru

Abstract. Principles of definition of intervals of time are advanced, opportunities GIS and control systems of databases for creation of climatic maps are designated. The basic sources for creation of bases of the climatic data are shown. Results of experiments of creation of maps of temperature of air by means of combinations of parameters from databases for various intervals of time for region of the Moscow area are submitted by means GIS with the purpose of studying and the forecast of changes of a climate.

Климатические карты — мощное средство пространственного анализа климатических данных. Для построения климатических карт используют ряды климатических наблюдений, представленные в климатических справочниках, информацию из современных архивов климатических данных, некоторые из которых опубликованы в сети Интернет, картографические материалы, спутниковые и радиолокационные данные, материалы климатических описаний. В целях климатической обработки данных за длительные периоды, такие как 30 и более лет, что необходимо для долгосрочного прогнозирования и анализа изменений климата, выбор интервала для анализа и осреднения целесообразно выполнять пользователем ГИС в интерактивном режиме различными вариантами моделирования временных интервалов.

Методы обработки климатологической информации для создания климатических карт обоснованы в трудах Б.П. Алисова, И. А. Гольцберга, О. А. Дрождова и других [Алисов и др., 1952, Афанасьев и др., 2010]. Анализ этих и других работ, а также наши экспериментальные исследования показали, что для определения
временных интервалов, структурирования баз данных и комплексирования карт требуется климатологический анализ для каждого картографируемого показателя.

Цель работы – разработка принципов оптимизации выбора временных интервалов и определение возможностей комплексирования баз данных для создания климатических карт с учетом используемых ГИС и систем управления соответствующими базами данных.

Причины определения временных интервалов
Для определения временных интервалов при создании климатических карт нами разработаны следующие положения:
- учет временных рамок картографирования в соответствии с реальными климатическими изменениями;
- анализ временных рядов, построение графиков динамики показателей за весь период наблюдений на основе всех имеющихся источников; проведение процедур корреляции и сглаживания;
- сопоставление графиков исходных данных и результатов сглаживания, выделение трендовой составляющей и периодов с разными трендами;
- анализ различных ритмов климатических изменений с учетом взаимодействия всех климатообразующих факторов;
- соответствие временных рамок картографирования экологическим аспектам и антропогенным изменениям территорий.

Второй период с 1930 по 1960 год характеризует климат до периода интенсивного антропогенного изменения. Следующий период с 1961 г. по 1990 г. рекомендован Всемирной Метеорологической Организацией (ВМО) как базовый период для современного климата. Для этих временных интервалов на территории России и ее регионы справочники не изданы. Однако существуют архивы климатических данных. К недостаткам архивов данных можно отнести: представление сырых материалов и отсутствие специальной климатологической обработки данных; частую локализацию информации не по станциям наблюдений, а по узлам регулярной сетки, отсутствие данных по высотам точек локализации данных. Достоинствами таких источников данных являются их доступность в сети Интернет, электронная форма записи и возможность конвертации в различные форматы, удобные для картографирования. Эти данные составляют основу для формирования регулярной подсистемы периодов климата.

С 1990 г. - по настоящее время не существует регулярных печатных изданий типа Климатического справочника СССР. Этот период можно охарактеризовать как время нерегулярных климатических справочников и становления Web технологий типа Системы ClWare [http://gis-lab.info/ ga/meteo-station-sources.html]. Данная система ориентирована на применение в областях центра по гидрометеорологии, управлении по гидрометеорологии, научно исследовательских организациях. Основные задачи этой системы: ввод гидрометеорологической информации в систему, получение различных климатических характеристик, ведение базы данных гидрометеорологической информации и метаданных, а также доведение информации до потребителей.

Средние многолетние величины, полученные путем принятой в климатологии специальной обработки и приведенные к одному периоду, являются сопоставимыми данными, характеризующими одну из сторон климата (термический режим, увлажнение и т. д.) и могут быть непосредственно использованы в целях картографирования. Методика построения карт по средним многолетним значениям хорошо разработана.
Помимо средних значений на картах могут быть нанесены экстремальные значения климатических показателей. Эти данные могут быть структурированы в специальные базы данных периодов климата.

Выделенные нами периоды не являются единственно возможными для анализа современных климатических изменений на различных уровнях. Прежде всего, возможно привлечение других справочников и материалов, представляющих осредненные данные на другие периоды, например «Климатологического справочника СССР» и «Научно-прикладного справочника по климату СССР». Первый издан в 1941–50 гг. 27 отдельными выпусками по республикам и областям. Таблицы справочника вычислены из рядов наблюдений различной длительности в пределах основного периода с 1881 по 1935 г. Научно-прикладной справочник по климату СССР состоит из 4 серий [Atlas krainjiny Ceska republiky Praha, 2009]. Наибольший интерес для картографирования представляет серия 3 «Многолетние данные», которая состоит из нескольких частей: солнечная радиация и солнечное сияние; температура воздуха и почвы; ветер и атмосферное давление; влажность воздуха, осадки и снеговой покров; облачность, атмосферные явления, гололедно-изморозевые образования; комплексы метеорологических величин. Представленные данные за столетний период с1881 года (в зависимости от станции).

Данные различных периодов составляют основу для баз данных, которые для реальной оперативной работы могут быть структурированы в среде dBase, Microsoft Excel, Microsoft Acces. Для сетевых решений целесообразно использование СУБД Oracle.

Методика картографирования температуры воздуха на территории Московской области на основе комплексирования баз данных

На кафедре картографии и геоинформатики Географического факультета МГУ проведены экспериментальные работы по картографированию средней месячной температуры воздуха территории Московской области на основе комплексирования баз данных.

На первом этапе выполнено исследование программных продуктов и баз данных в сети Интернет. Анализ программных продуктов для работы с базами данных показал, что для оперативной работы с данными, целесообразно использование индексированных таблиц, оформленных в виде файлов таблиц Excel или текстовых файлов, число записей в которых не превышает 65 000, что увеличивает скорость построения аналитических карт и операций вставки при выполнении SQL запросов. С этими базами данными могут работать коммерческие ГИС: ArcInfo, MapInfo, Кarta 2011 (КБ «Панорама») и dr., а также свободно распространяемое ПО ГИС типа Quantum GIS.

Идеальным случаем с формальной точки зрения служит использование СУБД Oracle, которое приемлемо для хранения любых массивов и форматов данных. Это СУБД весьма перспективно для многопользовательской, разрозненной, но определенным образом структурированной, удаленной БД и рассчитанной для совместного управления различными уровнями пользователей.

В сети Интернет представлены ресурсы с климатическими данными по станциям для территории России. Наибольший интерес представляют архивы данных Всероссийского НИИ гидрометеорологической информации - Мирового центра данных (ВНИИГМИ-МЦД) и архив NCDC/GSOD - Global Surface Summary of Day (GSOD). В первом представлены суточные данные по 223 станциям с 1880 года (в зависимости от станции) по 2006 год по температуре и осадкам, текущие и абсолютные экстремальные значения температуры воздуха с 2008 года. Второй содержит суточные данные по температуре, осадкам, влажности воздуха, ветровому режиму по 9000 станциям мира, включая 3200 станций по России, с 1929 года. Архив структурирован по годам.

Для построения карт средней месячной температуры воздуха были привлечены материалы данных из сети Интернет, базы данных, подготовленных на географическом факультете МГУ П.А. Тороповым, а также Справочника по климату СССР на территории Московской области (вып.8). На первом этапе выполнена процедура комплексирования данных. Все данные были сведены в параллельные ряды и посчитаны корреляции и соотношения. Средствами ArcGIS на втором этапе составлены графики изменений температуры воздуха по отдельным пунктам. Всего построено 7 графиков по данным за 1881 в зависимости от станции — 2000 год. Для каждого графика проведена процедура сглаживания [Киселев, 2001]. На основе визуального анализа сглаженных графиков выделено два периода. Первый период с 1881 по 1960 годы, второй с 1970 по 2000 годы. Для
первого периода использовались данные из климатического справочника СССР, для второго построена сводная таблица данных. За основу взяты температурные характеристики по отдельным метеорологическим станциям Московской области за январь и июль из базы данных, подготовленной на географическом факультете МГУ П.А. Горпопов. Обрабатывались значения по 10 метеостанциям Московской области: Волоколамск, Кашира, Клин, Коломна, Можайск, Москва МГУ, Наро-Фоминск, Ново-Иерусалимск, Павловский Посад, Серпухов. Так как температурные характеристики имелись на каждый срок наблюдения и на каждый день месяца, то необходимо было сгладить и обработать предоставленные данные, что было выполнено средствами Microsoft Office Excel. Таким образом, были получены значения температурных характеристик за последние 30 лет за июль и за январь для каждой станции (таблица 1).

<table>
<thead>
<tr>
<th>Станция</th>
<th>Температура в °C за период с 1970 по 2000 г.г.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>январь</td>
</tr>
<tr>
<td>Можайск</td>
<td>-8,4</td>
</tr>
<tr>
<td>Волоколамск</td>
<td>-9,4</td>
</tr>
<tr>
<td>Кашира</td>
<td>-8,8</td>
</tr>
<tr>
<td>Клин</td>
<td>-8,6</td>
</tr>
<tr>
<td>Коломна</td>
<td>-8,5</td>
</tr>
<tr>
<td>Москва, МГУ</td>
<td>-7,4</td>
</tr>
<tr>
<td>Наро-Фоминск</td>
<td>-8,4</td>
</tr>
<tr>
<td>Ново-Иерусалим</td>
<td>-8,6</td>
</tr>
<tr>
<td>Павловский Посад</td>
<td>-8,6</td>
</tr>
<tr>
<td>Серпухов</td>
<td>-8</td>
</tr>
</tbody>
</table>

Для каждого из периодов построены карты средней месячной температуры воздуха в январе и в июле. Изолинии температуры воздуха за последние 30 лет были построены в программном пакете ArcGIS. Основная работа выполнена в модуле Spatial Analyst интерполяция проведена методом сплайна, так как этот метод рассчитывает значения точек на основе математической функции, минимизирующей кривизну поверхности, в результате получается сглаженная поверхность, точно проходящая через все точки измерений. Этот способ является наилучшим для моделирования непрерывных поверхностей для таких климатических показателей, как температура, количество осадков и т.д. Для уточнения построенных изолиний необходима географическая интерполяция данных: учет взаимосвязей с рельефом и климатообразующими факторами.

Полученные карты проанализированы с точки зрения изменений средней месячной температуры. В январе за последние 30 лет произошли заметные изменения в сторону потепления на большей части территории Московской области. Так, если за базовый период средняя температура января была от -10°С до -11°С, то за выделенные 30 лет в этих же районах температура колеблется от -8°С до -9°С (рис.1). Разница в январе составляет в среднем плюс 2 °С. В июле тенденция к повышению температуры воздуха существенно меньше, чем в январе. Например, в Дмитровском районе Подмосковья теперь на 0,5°С теплее, чем было. В июле отмечаются теплые очаги городов, таких, как Можайск и Коломна.

Установленные зависимости об изменениях температуры в Московской области сопоставлены с результатами исследований на основе моделирования на территории Восточно-Европейской равнины, выполненной по программе прогноза климатической ресурсообеспеченности. Такое сопоставление показала хорошую сходимость тенденции повышения температуры воздуха. Так, в середине 21 века (2016-2065 г.г.) в январе прогнозируется годовая средняя суточная температура воздуха в этом регионе на 3-6°С [Справочник по климату СССР, 1964-1970]. Таким образом, на основе картографического моделирования можно выделить пространственные и временные аномалии в общем тренде климатических изменений.

Анализ современного климата и изменений за последние десятилетия может быть существенно углублен и расширен на основе фундаментальных картографических произведений, разработанных с применением комплексирования баз данных за оптимальные временные интервалы.

Разработка параметров оптимизации выбора временных интервалов для картографирования позволяет делать объективные выводы об изменении температурного режима.

Выводы

Целесообразна оптимизация выбора временных интервалов для всей совокупности климатических данных, включая архивы обработанных и «сырых» данных сети наблюдений за атмосферой и ее загрязнением; актуально создание новых видов электронных климатических справочников с гиперссылками.
на данные непосредственных наблюдений, что позволит выполнять комплексирование баз данных при их обработке.

Анализ климатических карт, построенных на основе данных за различные промежутки времени на территории Московской области, позволил выявить изменения средней месячной температуры в сторону потепления за период с 1970 по 2000 гг.

Важна разработка общедоступных для массового пользователя современных общемировых баз климатических данных, которые должны быть логично структурированы, снабжены системой составления комбинаций данных, получаемых из различных источников, и обработки по единой методике за оптимальные периоды, для анализа современных климатических изменений для различных территорий и создания соответствующих карт.

ЛИТЕРАТУРА

3. Афанасьев В. Н., Юбаев М. М. Анализ временных рядов и прогнозирование. Учебник. – М.: Финансы и статистика, 2010. – 162 с.
Возможности использования интернет-источников в геоинформационном картографировании объектов нефтегазового комплекса

Прасолова А.И., Каргашин П.Е., Афанасьев Д.А., Кужанов Д.А.
Географический факультет
Московский Государственный университет имени М.В. Ломоносова
Москва, Россия
E-mail: prasolova.geo@yandex.ru, p.e.kargashin@mail.ru, da04@mail.ru, kuzhanov.dmitrii@mail.ru

Possibilities of Use of Internet Sources in Geoinformation Mapping of Objects of the Oil and Gas Complex

Prasolova A.I., Kargashin P.E., Afanasev D.A., Kazanov D.A.
Geographical Faculty
M.V.Lomonosov Moscow State University
E-mail: prasolova.geo@yandex.ru, p.e.kargashin@mail.ru, da04@mail.ru, kuzhanov.dmitrii@mail.ru

Abstract. Nowadays World Wide Web becomes a centralized place of collection, storage, manipulation and transfer of data. There are several reasons for this process. Firstly, web-standart of data storage is still improving. Secondly, there are effective algorithms of data search in Internet, for example Google web-search. Thirdly, different organizations convert their data to supported formats and distribute it via World Wide Web throughout the world.

Websites allow to place all kind of information which can be used for GIS-mapping. One of the most developed part of web space refers to oil and gas industry. Up-to-date GIS-mapping of oil and gas industry’s objects should draw a great attention to data which is placed in Web. Also some rules and recommendations must be discussed.

С момента появления Интернета, значение различных фондов, библиотек и прочих мест организованного хранения бумажной информации постепенно снижается ввиду их недостаточной доступности и оперативности. Возможно, что в скором времени глобальная сеть станет ведущим централизованным местом сбора, хранения, обработки и передачи любого вида информации. Этому способствуют активные разработки новых и совершенствование существующих протоколов передачи информации, качественное улучшение алгоритмов поиска необходимой информации, достижения в области веб-картографирования. Важную роль играет мировая тенденция переводу материалов различных фондов в электронный вид с целью последующего их размещения в сети для общего доступа [Стратегия развития информационного общества...].

Российский сектор глобальной сети на сегодняшний момент продолжает развиваться высокими темпами. Наиболее полной и актуальной информацией располагают интернет-порталы наиболее развитых отраслей российской промышленности и сферы услуг. В первую очередь, это информация о топливно-энергетическом комплексе страны [http://www.marketer.ru].

Весь массив информации может быть представлен новостями отрасли, картами и снимками, официальными документами, статистическими данными, фотографическими материалами, научными статьями, докладами, литературой, информацией о конференциях и выставках.

В зависимости тематики и принадлежности интернет-порталы удобно разделять на шесть типов: официальные сайты компаний, консалтинговые агентства, сайты министерств и ведомств, информационные агентства, сайты специализированной периодики, научно-справочные сайты, прочие сайты. Примеры интернет-порталов, а также типичный для них набор информации представлен в таблице 1.

Официальные сайты компаний представляют собой наиболее информативные ресурсы из всех доступных для обычного пользователя. Предоставляется полная информация об истории компании, ее деятельности, а также перспективы развития. Практически всегда на главной странице ресурса присутствуют своевременно обновляющиеся новости компании, а также новости нефтегазовой отрасли. Для
описания географии своей деятельности обычно размещаются карты, схемы и прочие геоизображения. Для просмотра информации нет необходимости регистрироваться на странице или оплачивать данный вид услуг. В некоторых случаях имеются ссылки на надежные ресурсы, посвященные нефти и газу, а также на ресурсы дочерних компаний.

Таблица 1. Примеры интернет-порталов

<table>
<thead>
<tr>
<th>Тип</th>
<th>Виды информации</th>
<th>Примеры</th>
</tr>
</thead>
</table>

Сайты консалтинговых агентств являются наиболее закрытыми для получения информации ресурсами, поскольку предоставление информации является основным источником их дохода. Здесь можно свободно найти новости нефтегазового комплекса, но основной массой актуальной статистической информации, геоизображений, научных разработок доступен только на коммерческой основе.

Сайты государственных учреждений (министерств, ведомств, научно-исследовательских институтов) предоставляют наиболее полную информацию о нефтегазовом комплексе страны. Важной особенностью таких интернет-ресурсов следует считать объем и полноту информации (в основном статистической). Также стоит уделять внимание картографическим материалам, если таковые присутствуют. Стоит отметить, что сегодня сайты при государственной поддержке активно развиваются и предоставляют информацию в удобном виде.

Информационными агентствами называют специализированные информационные предприятия, обслуживающие средства массовой информации. Их основная функция — снабжать оперативной политической, экономической, социальной, культурной информацией редакции газет, журналов, телевидения, радиовещания, а также другие учреждения, организации, частных лиц, являющихся подписчиками на его продукцию. Главную часть ресурсов информационных агентств в сети составляют новости, причем новости могут содержать и геоизображения, и статистическую информацию. Обычно новости сопровождают дополнительной информацией, которая тоже может быть использована. Большинство информационных агентств имеют внушительный архив новостей, по которым можно проводить поиск по ключевым словам.

Следующую категорию представляют сайты специализированной периодики — журналы, газеты, ориентированные на нефтегазовый комплекс, события и явления в нем, новые разработки в отрасли. Ценными данными являются научные статьи и литература, ссылки на которые предоставляются на ресурсах.
Инфраструктуры пространственных данных, базы и интеграция данных, метаданные, геосервисы

Рис. 1. Карта нефтяной отрасли Астраханской области
Шестую категорию составляют научно-справочные ресурсы – электронные энциклопедии и справочники. Достоинством данной категории ресурсов является полнота и объем размещенной на страницах информации. Однако данные нередко являются весьма устаревшими и не могут быть признаны актуальными для дальнейшего использования. На ресурсах может быть размещена практически любой вид информации: изображения, карты, статистика, справочные статьи и литература, но зачастую отсутствуют новости.

В последнюю категорию можно включить сайты и порталы, которые по своим свойствам и содержимым данным не могут быть однозначно отнесены к какой-либо приведенной категории.

Понятие адресов интернет-порталов, обладающих сведениями, необходимыми для создания карт нефтегазового комплекса, возможно несколькими способами. Во-первых, источниками адресов интернет-страниц могут служить специализированная периодика, средства массовой информации, специалисты данной отрасли промышленности. Во-вторых, это использование ресурсов информационно-поисковых систем - программ, обеспечивающих отбор информации из сети Интернет в соответствии с назначением системы, индексирование собранной информации и поиск информации на основе индекса [Рогин, 2011].

Для более полного поиска информации по всей сети следует использовать сразу несколько алгоритмов информационно-поисковых систем. Подобные системы, объединяющие по запросу пользователя несколько алгоритмов поисковых машин, называют метапоисковыми системами. Примерами метапоисковых систем являются Search.com (Google, Ask.com, MSN, DMOZ), Nigma (Яндекс, Google, Rambler, Altavista) и ряд других.

Особое внимание стоит уделить геоинформационным веб-сервисам, под которыми понимается программная система, доступная посредством интернет-протоколов, содержащая архив пространственно-координированной информации. Эта информация представлена в виде данных дистанционного зондирования, карт, векторных слоев и других геообразований различного масштаба, пространственного разрешения, организованных с помощью технологии мультимасштабного картографирования, с возможностью поиска объектов по базе данных с удаленного сервера и определения его географических координат, определения заданных расстояний [ГИС и Геопорталы]. Известными геоинформационными веб-сервисами являются Google Maps, Яндекс.Карты, Bing Maps, Космоснимки.ру.

Поскольку необходимые данные распределены по многочисленным ресурсам, которые частично дублируют друг друга, следует расставить приоритеты найденным интернет-порталам. В первую очередь, необходимо использовать те категории сайтов, которые наиболее полно и объёмно характеризуют состояние нефтегазовой отрасли. К ним относятся официальные сайты компаний и сайты министерств и ведомств. При наличии нескольких источников следует выбирать актуальные на сегодняшний день интернет-порталы. В то же время наиболее оперативными являются сайты информационных агентств, что важно при ведении дежурных карт.

Пример карты, составленной на основе исключительно интернет-источников приведен на рис 1. На основной карте отображено расположение магистральных трубопроводов, нефтяных, газовых и газоконденсатных месторождений, предприятий, связанных с нефтегазодобывающей отраслью, дополнительно представлены сведения об основных автомобильных и железных дорогах, железнодорожных станциях, местоположения аэропортов, речных и морских портов, населенных пунктов.

На первой карте-врезке показана информация о лицензионных участках Астраханской области, их классификации по типу лицензии и типу сырья, их владельцев. На второй карте-врезке – схема существующих и проектируемых магистральных трубопроводов Каспийского региона.

При составлении такой карты надо учитывать ряд особенностей источников данных, представленных в интернет и выполнять проверку исходной информации. Важно уточнить пространственное положение и содержание и при необходимости дополнить по другим источникам. Обязательно требуется проверять все привлеченные источники на принадлежность одному промежутку времени, схожесть методик сбора и подсчета данных для приемлемой согласованности всей информации.

Основной проблемой при использовании информации, размещенной на интернет-порталах, является именно выбор основных и дополнительных источников для составления карт. Достоверность источника можно проверить, только ссылаясь на авторитетность портала, мнение специалиста или на собственные знания.

Точность карт, составленных исключительно на основе интернет-источников, вполне достаточна для отображения явлений и процессов, в масштабах 1: 1 000 000 и мельче. Для создания карт топливо-
нергетического комплекса в более крупных масштабах по-прежнему необходима информация из фоновых источников или же данных экспедиционных работ.

Таким образом, Интернет, содержащий сведения практически из всех областей знания и обладающий способностью хранения и представления разных данных, постепенно становится централизованным местом сбора и хранения информации. Важным является наличие эффективных алгоритмов поиска необходимой информации в глобальной сети. Это открывает новые возможности для автоматизированного картографирования объектов не только топливо-энергетического комплекса, но и для других аспектов человеческой деятельности. По ряду причин это справедливо для составления мелкомасштабных карт.

С постоянно увеличивающимися информационным потоком заметную роль в процессе поиска и отбора данных должны играть специалисты-аналитики в сотрудничестве с картографами.

ЛИТЕРАТУРА

1. ГИС и Геопорталы http://www.sovzond.ru/
2. Обзор нефтегазового комплекса в Интернете http://www.marketer.ru

ВЕБ-СЕРВИСЫ И ПРИЛОЖЕНИЯ ДЛЯ ГЕОИНФОРМАЦИОННОГО ИНТЕРНЕТ-ПОРТАЛА ИНСТИТУТА ВЫЧИСЛИТЕЛЬНОГО МОДЕЛИРОВАНИЯ СИБИРСКОГО ОТДЕЛЕНИЯ РАН

Кадочников А.А.
Институт вычислительного моделирования Сибирского отделения РАН
Красноярск, Россия
E-mail: scorant@icm.krasn.ru

WEB SERVICES AND APPENDICES FOR THE GEOMATIC INTERNET PORTAL OF INSTITUTE OF COMPUTING MODELING OF THE SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCE

Kadochnikov A.A.
Institute of computing modeling of the Siberian Branch of the Russian Academy of Science
Krasnoyarsk, Russia
E-mail: scorant@icm.krasn.ru

Abstract. In this paper consider the problems and solutions encountered when developing web-services and applications with the means of thematic mapping for geoportal ICM SB RAS. Much attention was paid to the updating map of services and map local cache for third-party software.

При разработке совместных проектов различных научных институтов, университетов и подразделений органов власти возникает ряд проблем, связанных с обменом данными и метаданными о пространственной информации. Возникает задача разработки распределенного хранилища пространственной информации для более эффективного взаимодействия различных организаций. Разработаны программные средства для анализа пространственных данных в среде геопортала Института вычислительного моделирования СО РАН с использованием технологий, предлагаемых международным консорциумом Open Geospatial Consortium и программного обеспечения MapServer и MapGuide Open Source. Программные инструменты содержат средства для хранения цифровых картографических материалов, растровых снимков территории, сервисы для навигации по распределенному каталогу пространственных данных, сервисы для пространственного анализа и математического моделирования на унифицированных цифровых картах. Основным элементом геопortalов является каталог метаданных о пространственных данных.

Каталог метаданных содержит информацию по доступным слоям и картам. Основной особенностью каталога пространственных данных является возможность использования различных форматов пространственных данных и организации доступа для пользователя к этим данным с помощью современных стандартов и технологий. Для оформления карт и картографических слоев применяется Styled Layer Descriptor – язык описания стилей, используемый для отображения объектов на карте в WMS, WFS и WCS серверах, а также собственный формат описания стилей, разработанный для геопортала ИВМ СО РАН [Якубайлик и др., 2009].

93
Для построения клиентской части веб-приложения подходят несколько технологий — DHTML, Flash, SVG (Scalable Vector Graphics — масштабируемая векторная графика). Их возможностей достаточно для реализации клиентской логики картографического веб-интерфейса. Одним из интересных решений и популярных на сегодняшний день является применение технологии динамического HTML с методами асинхронного обмена данными без перезагрузки страницы (Remote Scripting, AJAX). Практически все современные веб-браузеры поддерживают эти технологии без использования дополнительных модулей.

Рис. 1. Формирование карты для веб-приложения

При разработке серверной части веб-приложения для информационно-аналитических систем используется программное обеспечение MapServer, предназначенное для обеспечения доступа через Интернет к интерактивным картам, различной пространственно увязанной информации. MapServer позволяет интегрировать данные из нескольких источников или серверов, а также использовать средства программирования для создания пользовательских приложений, обеспечивает прямой доступ к файлам различных форматов систем автоматизированного проектирования и разработки геоинформационных систем. MapServer представляет собой открытую и свободно распространяемую среду разработки Интернет-приложений для работы с электронными картами широко распространенных среди множества геоинформационных систем векторных и растровых форматов, обладающую большим числом функциональных возможностей. В дальнейшем рассматривается возможность использования программного обеспечения GeoServer, который во многом похож на MapServer. Однако, в отличие от MapServer, GeoServer реализует спецификацию WFS-T (Web Feature Service - Transaction). Это значит, что используя GeoServer, вы можете не только получать данные для построения на их основе собственных карт, но также редактировать полученные данные с последующим автоматическим обновлением исходной информации на сервере (рис. 2).

Источником пространственных данных для сервера с программным обеспечением GeoWebCache послужил WMS сервер с картой Красноярского края на основе программного обеспечения MapServer. Реализована система сервисов, которые поддерживают кэш растровых изображений на сервере с GeoWebCache в актуальном состоянии при обновлении исходных данных на WMS сервере.

Для управления картой Красноярского края автором был разработан сервер и набор веб-сервисов, а также было подготовлено программное обеспечение на стороне клиента, состоящее из следующих модулей:
• модуль управления слоями – создание, удаление и редактирование карт на WMS и GeoWebCache серверах;
• модуль создания «версий» карт – создание обновлений кэша тайлов для карт (область обновления, список измененных слоев карт);
• модуль администрирования – управление пользователями, запуск обновлений после проверки, запуск служебных обновлений кэша тайлов;
• просмотр обновлений – просмотр выполненных, обрабатываемых обновлений для выбранной карты и ожидающих запуска в очереди.

Общий механизм работы сервисов обновления представлен на рис. 3.

Процесс обновления хранилища тайлов состоит из следующих этапов:
• обновление тайлов в заданной области;
• удаление тайлов в заданной области и обновление тайлов на верхних уровнях заданной области;
• полная очистка хранилища тайлов и обновление верхних уровней.

В результате объединения различных технологий представления карты пользователю на стороне клиента реализован вариант, в котором карта состоит из двух слоев: подложка и тематический слой. В качестве слоя подложки используется карта Красноярского края, построенная на основе маленьких растровых изображений (таилов) размером 256х256 пикселей. Набор тайлов организован в виде пирамиды для 16 масштабных уровней, начиная от карты России и заканчивая картами населенных пунктов масштаба 60 см на пиксель. Эта карта может размещаться на любом сервере, путь к которому определяется в клиентском программном обеспечении. Вторая часть карты накладывается поверх слоя подложки в виде полупрозрачного растрового изображения.

Второй составляющей геопортала РБМ СО РАН является хранилище метаданных, реализованное на основе СУБД PostgreSQL. PostgreSQL – это свободно распространяемая объектно-реляционная система управления базами данных, наиболее развитая из открытых СУБД в мире и являющаяся реальной альтернативой коммерческим базам данных. Существуют версии этой СУБД для различных Unix-систем и для Windows. Дополнительно установлено программное обеспечение PostGIS, которое является расширением для объектно-ориентированного сервера реляционных баз данных PostgreSQL. PostGIS привносит в объектно-реляционную базу данных PostgreSQL поддержку географических объектов. В результате PostGIS преобразует PostgreSQL в пространственную серверную базу данных для геоинформационных систем, подобно расширением SDE компании ESRI или расширению Spatial компании Oracle. В дальнейшем планируется использование СУБД Oracle с расширением Spatial для хранения больших объемов векторных данных.

Первые версии каталога пространственных данных использовались при разработке Банка пространственных данных (БПД) Единой краевой информационной системы администрации Красноярского края. На основе БПД разработан Интернет-ресурс «Информационная система оценки инфраструктуры...
жизнеобеспечения малочисленных, труднодоступных населенных пунктов», содержащая справочные сведения и средства анализа и оценки состояния социальной и транспортной инфраструктуры, энергоресурсов, связи и возможностей использования санитарной авиации для решения проблем малочисленных, труднодоступных населенных пунктов.

Сегодня в результате развития технологий и программного обеспечения получены новые результаты, которые позволили значительно усовершенствовать существующую систему, результатом которой стала Интернет-система мониторинга состояния окружающей природной среды в зоне действия предприятий нефтегазовой отрасли Красноярского края. Ресурсы и инструменты разработанной системы могут быть использованы при разработке других систем подобного типа. Предложенная технологическая основа уже успешно использована в нескольких проектах:

Литература

Геопортал IVIS ДВО РАН для интеграции вулканологических и сейсмологических данных

Romanova I.M.
Институт вулканологии и сейсмологии Дальневосточного отделения РАН
Петропавловск-Камчатский, Россия
E-mail: roman@kscnet.ru

GEOPORTAL IVIS FAR EASTERN BRANCH OF RAS INTEGRATION VOLCANO AND SEISMIC DATA

Romanova I.M.
Institute of volcanology and seismology of Far East branch of the Russian Academy of Sciences
Petropavlovsk-Kamchatski, Russia
E-mail: roman@kscnet.ru

Abstract. Creation of geoportals and metadata management systems as a part of spatial data infrastructure is one of the modern trends of geoinformation technologies evolution. This paper suggests one of the possible technologies for creation of a peripheral node of Academy of Sciences Spatial Data Infrastructure based on free open source software. The author describes certain aspects of creation of the geoportal in the Institute of Volcanology and Seismology FEB RAS as a single point of access to the distributed volcanological and seismological data.

Введение

В последние годы в Институте вулканологии и сейсмологии (ИВиС) ДВО РАН наблюдается значительный рост объема научных данных в различных цифровых форматах, обусловленный появлением новых методов сбора, обработки и хранения данных, развитием информационных технологий и средств телекоммуникаций. Основная часть данных, образующих информационные ресурсы института, представляет собой пространственно-координированные данные. Распределенный характер хранения, различные условия сопровождения и методы доступа существенно затрудняют их поиск и эффективное использование. Решением этих проблем может стать формирование локальной инфраструктуры
пространственных данных (ИПД) института и ее ключевого элемента – Геопортала ИВиС ДВО РАН, как единой точки доступа к распределенным вулканологическим и сейсмологическим данным [Romanova, 2011].

Геопортал ИВиС ДВО РАН

В 2006 г. Правительством РФ одобрена «Концепция создания и развития инфраструктуры пространственных данных Российской Федерации» (РИПД) как основы интеграции национальных геоинформационных ресурсов [Распоряжение Правительства РФ...]. Одним из элементов РИПД должна стать академическая инфраструктура пространственных данных (АИПД) [Кошкарев и др., Решение Всероссийского семинара...]. АИПД будет включать периферийные, в том числе региональные и локальные узлы, работа по созданию которых уже ведется в ряде учреждений РАН [Кошкарев и др., 2010]. Каждый узел АИПД должен иметь свой геопортал.

Геопортал – это сайт или веб-портал с функциями управления пространственными данными и метаданными, а также предоставления доступа к данным и сервисам, связанным с этими данными (поиска, визуализации, загрузки, трансформирования и т. п.) [Кошкарев и др.]

Геопортал ИВиС ДВО РАН создается с начала 2010 г. Архитектура геопортала разработана на базе свободных программных продуктов с открытым исходным кодом (GeoNetwork OpenSource, GeoServer и др.), распространяемых по лицензии GPL (GNU General Public License), что соответствует рекомендациям открытого геопространственного консорциума (Open Geospatial Consortium, OGC). Для хранения и организации доступа к атрибутивным данным геопортала используется технология реляционных баз данных, для доступа к картографическим данным – технологии открытых веб-сервисов (Open Web Services, OWS) OGC и геосервисов Google Earth и Google Map. Основными компонентами геопортала являются: метаданные для описания информационных ресурсов; данные в виде наборов атрибутивных данных (баз данных, коллекций данных) и слоев пространственных данных в различных форматах (растровом, векторном и др.); сервисы – веб-приложения для доступа к базам и коллекциям данных и геосервисы для визуализации слоев пространственных данных.

Геопортал ИВиС ДВО РАН предоставляет единный пользовательский веб-интерфейс для доступа к распределенным информационным ресурсам института, включая систему управления метаданными и Каталог метаданных для поиска данных, а также картографический сервер для публикации слоев пространственных данных на геопортале и создания на их основе интерактивных карт и геосервисов. Геопортал доступен в сети Интернет по адресу http://geoportal.kscnet.ru (рис. 1).

![Рис. 1. Главная страница Геопортала ИВиС ДВО РАН](image-url)
Метаданные

Одна из основных функций геопortal – предоставление возможности поиска данных и сервисов. Информационной основой для поиска данных и оценки их пригодности для практического применения являются метаданные.

Метаданные – это данные о данных или структурированные данные, которые описывают характеристики объектов – носителей данных, способствующие идентификации, обнаружению, оценке и управлению этими данными [12].

В ИВиС ДВО РАН работа по инвентаризации информационных ресурсов – геоинформационных систем (ГИС), баз данных (БД), коллекций данных и различных форматов (текстовом, табличном и т. д.) и создании их описаний – метаданных, ведется с 2008 г. [Романова, 2010].

Система обеспечивает мощные средства создания, редактирования, отображения и поиска метаданных, управления пользователями и разграничения доступа к ресурсам системы, предоставляет возможность визуализации слоев пространственных данных на встроенной интерактивной карте [Романова, 2010]. Интерфейс системы реализован на 8 языках.

Описания ресурсов в Каталоге систематизированы по нескольким категориям. По способу хранения данных выделены следующие категории: базы данных, наборы данных, ГИС; по формату представления данных – карты, фотографии, видеоролики, спутниковые снимки, публикации, материалы конференций; по тематике описываемых данных – категории «Вулканы и вулканоопасность» и «Землетрясения и цунами». При этом описание каждого ресурса может принадлежать как одной, так и одновременно нескольким категориям.
Важнейшая функция системы – интеграция с другими каталогами метаданных в сети Интернет через механизм сбора метаданных (harvesting). Механизм harvesting обеспечивает копирование метаданных из удаленных источников с заданной периодичностью, при этом данные, доступные для загрузки, остаются на удаленных узлах. В настоящее время к сбору метаданных в Каталог ИВиС ДВО РАН подключены более 30 удаленных источников с выборкой из них метаданных по вулканизму и сейсмичности на Камчатке и в мире – каталоги метаданных научных институтов, центров и геологических служб разных стран:

- Института вычислительных технологий Сибирского отделения РАН;
- U.S. Geological Survey;
- NOAA’s National Geophysical Data Center (NGDC), USA;
- Institute for the Study of the Continents, Cornell University, USA;
- Geological Survey of Canada;
- Institut Géographique National, France;
- Instituto Geológico Minero y Metalúrgico (INGEMMET), Peru;
- Observatorio Sismológico del Sur Occidente (OSSO), Colombia и др.

На начало ноября 2011 г. Каталог метаданных содержит описания более 1000 информационных ресурсов, из которых 104 записи метаданных описывают ресурсы ИВиС ДВО РАН – как сетевые (доступные в сети Интернет/Интернет), так и локальные (хранящиеся на рабочих станциях сотрудников), остальные записи получены в процессе сбора метаданных из удаленных источников.

Данные

В настоящее время геопортал предоставляет единую точку доступа к распределенным информационным ресурсам ИВиС ДВО РАН, доступным в режиме online:

- Каталог «Активные вулканы Камчатки и Северных Курил» – содержит информацию о 36 активных вулканах, для каждого вулкана приведены географические координаты, высота, дата последнего извержения, форма постройки, состав пород, возраст, опасность и др.;
- Каталог «Глобальные вулканы Камчатки» – содержит описания 50 вулканов, результаты вулканическо-геохронологического исследования, радиоуглеродного датирования, геохимических анализов;
- БД «Позднекайнозойские подводные вулканы Тихого океана» – содержит описания 312 подводных вулканов. Для наиболее изученных вулканов приводится сведения о магнитных свойствах и химическом составе драгированных образцов;
- Архивы Группы реагирования на вулканические извержения (Kamchatka Volcanic Eruption Response Team, KVERT) – содержат еженедельные сообщения о состоянии активных вулканов Камчатки и Северных Курил, прогнозные сообщения об опасности вулканов для авиации и другую информацию, полученную на основе спутникового, сейсмического, видео- и визуального мониторинга вулканов;

С января 2011 г. в составе Геопорта ИВиС ДВО РАН создается Информационная система (ИС) «Вулканы Курило-Камчатской островной дуги» – «Volcanoes of Kuril-Kamchatka Island Arc» (VOKKIA) (http://geoportal.kscnet.ru/volcanoes/) [Романова]. ИС обеспечивает единый веб-интерфейс для доступа к вулканологическим БД и связанным с ними картографическим сервисам. На начало ноября 2011 г. ИС содержит сведения о 177 вулканах Камчатки, Курил и прилегающих акваторий. Начат ввод данных об исторических извержениях действующих вулканов. ИС VOKKIA позволит систематизировать широкий комплекс вулканологической информации (геологической, геохимической и др.) по наземным и подводным вулканам региона. Это даст возможность рассматривать периодичность активности вулканов в историческом ракурсе; оценивать состояние и прогнозировать характер их будущей активности; определять степень опасности вулканов и т.д.

Геосервисы

Одна из важных функций геопорта – обеспечение доступа к различным геоинформационным услугам – геосервисам.

WMS (Web Map Service) сервисы визуализации пространственных данных геопорта предоставляют возможность отображать растровые и векторные слои, опубликованные не только на локальном, но и на удаленных картографических серверах, а с помощью интегрирования данных наложением слоев из различных источников – создавать новые тематические карты (http://geoportal.kscnet.ru/geonetwork/, http://geoportal.kscnet.ru/intermap/) (рис. 3).

На геопорте используется и другой способ визуализации пространственных данных – с помощью веб-интерфейсов, реализованных на основе геосервиса Google Earth, например:

- «Активные вулканы Камчатки и Северных Курил в Google Earth» – (http://www.kscnet.ru/ivs/kvert/volcanoes/google.php);
Заключение

Создание геопortalа на базе свободно распространяемых программных продуктов с открытым исходным кодом может служить примером одного из возможных технических решений формирования периферийного узла академической инфраструктуры пространственных данных.

Публикация пространственных метаданных и данных на геопортале обеспечивает возможность их эффективного поиска в сети Интернет и делает их доступными мировому научному сообществу. Кроме этого, благодаря механизму сбора метаданных из удаленных источников, геопортал предоставляет быстрый и удобный доступ к распределенной пространственной вулканологической и сейсмологической информации не только ИВиС ДВО РАН, но и других научных организаций мира. Таким образом, информационное пространство ИВиС ДВО РАН интегрируется в глобальное информационное научное пространство.

ЛИТЕРАТУРА

METHODICAL APPROACHES TO INVESTIGATIONS OF THE NORTHERN FORESTS
BOUNDARIES DYNAMICS USING AEROSPACE IMAGES

V.I. Kravtsova
Faculty of Geography
M.V.Lomonosov Moscow State University
Vorob’evy Gory, Moscow 119991
Russia
E-mail: valentinamsu@yandex.ru

Abstract. The problem of the northern boundary of forests and its dynamics is study in connection of global warming. Fuzzy character of this boundary (forest line) transforms this problem to dynamic of spatial structure of tundra-taiga ecotone. Remote sensing investigations on this problem are carry out by scientists of Aerospace Methods Laboratory, Department of Cartography and Geoinformatics, Faculty of Geography Moscow State University in the frame of PPS Arctic international project at test sites in plane and mountain regions on Kola Peninsula and Taimyr.

Forest-tundra zone at the northern edge of Russia is prolonged to 6000 km. Its structure depends on type of forest and its species, which changes from rare birch forests on Kola Peninsula and birch–fir-tree (picea) forests at European part of Russia to very rare larch forests and redina at Central and Eastern Siberia.

These regional differences and presence of aerospace images for the period of warming lead to different methodological approaches to processing of aerospace images for forest line and ecotone tundra-taiga structure studies. It is clear seen at the example of our investigations in two contrast regions – Kola Peninsula and Taimyr. In this regions we had tried to use various materials and the next approaches:

1. Comparison of multitemporal topographic maps, compiled in 1960’s (1:50 000) and 1980’s (1:25 000), have been created at Kola test site, but it was unsatisfactory due to not clear representation of tundra-taiga ecotone structure at the maps.

2. Comparison of multitemporal high resolution images – airphotos of 1950–1960’s with modern satellite images of very high resolution (VHR). This approach had allowed to study forest boundary claiming up at 30 m in Khibiny Mountains and advancing of dwarf shrub tundra to lichen tundra in Kanentiavr test site at plain part of Kola...
Peninsula. To regret, this successful approach may be apply only at local sites because of too small width of surveying pass, which lead to practically useless for wide territories.

3. Moving from VHR satellite images to Landsat. Landsat images are the best remote sensing materials for our purposes due to long period of surveying from 1970’s–1980’s. But their resolution (30 m) is not enough for representation of forest line and tundra–taiga ecotone structure changes. Different components of this ecotone structure are mixed in Landsat pixel. So the approach of unmixing is developing with using VHR images as etalons. Analyzing of VHR images and special spectrometric experiments have allowed to create the methodic of compiling maps, which characterize quantity relations of ecotone components at Kola test sites and maps with quantity characteristic of forests density – at Taimyr (Ary-Mas) test site. But compiling of such useful maps is possible only for modern period, when VHR satellite images have been appeared, and for the future.

4. Simple and universal approach based on comparison of multitemporal NDVI images taken by Landsat pictures, allows to investigate changes in tundra–taiga ecotone vegetation in essential period at the both test site regions, but it requires the execution of some conditions and additional actions during images processing.

Вопросы динамики северной (в горах верхней) границы лесов привлекают к себе внимание в связи с проблемой климатических изменений. Предполагаемое смещение границ распространения северных лесов рассматривается как одно из возможных последствий глобального потепления. Нечеткая выраженная граница северных лесов трансформирует эту проблему к оценке состояния переходной зоны между тундрой и тайгой (экотона тундра–таяга), изменений ее структуры.

Динамика северной границы леса и структуры экотона тундра–таяга в связи с климатическими изменениями исследуется в рамках международного проекта PPS Arctic-BENEFITS, в котором участвуют ученые Канады, Норвегии, Великобритании и России. В российской части проекта предусматривается изучение динамики северной границы леса по наземным и дистанционным материалам на равнинных и горных ключевых участках в европейской и азиатской частях России [Rees et al, 2009]. Экспедиционные исследования по этому проекту проводятся на Кольском полуострове (в Хибинах и в равнинном районе вблизи озера Карентьяр) и в Центральной Сибири – на Тайме и в горном районе плато Путорана. Лесотундровая зона охватывает северный фас России, протягиваясь на расстояние более 6 000 км. Структура растительности этой зоны зависит от того, леса какого породного состава выходят на их северные рубежи, сменяясь от березовых редколесий Кольского полуострова, березово-еловых редколесий Севера Европейской России к островам березовых, сосовых, еловых и лиственничных лесов Западной Сибири и переходя к лиственничным редколесьям и рединам Центральной и Восточной Сибири. В соответствии с этим меняется и структура растительности лесотундровой зоны. Наличие дистанционных материалов необходимого разрешения и повторяемости, наряду с региональными различиями, определяют и разные методические подходы к использованию аэрокосмических снимков для исследования динамики северной границы леса и структуры экотона тундра–таяга. Это особенно четко проявилось в процессе наших исследований в двух контрастных регионах – на Кольском полуострове и Таймаре. На их примере представлен целый спектр методических подходов, которые будут охарактеризованы в настоящем докладе. Но прежде всего рассмотрим географическую дифференциацию лесотундровой зоны и ее отображение на картах.

Отображение переходной зоны тундра–таяга на картах

Созданная в результате международного сотрудничества в области картографирования северных экосистем Циркумполярная карта арктической растительности (CAVM, Circumpolar Arctic Vegetation Map) масштаба 1:7 500 000 была бы должна отражать эту переходную зону, выделяемую в российских исследованиях как лесотундровая зона. Однако, авторы CAVM ограничились показом южных кустарниковых тунд, не характеризуя переход от них к бореальным лесам. Очевидна необходимость дополнения этой карты переходной зоной, экотоном тундра–таяга. Другое упущение карты CAVM – отсутствие на ней тунд на Кольском полуострове и в Скандинавии, отнесение их к приморским пустошам.

Нет твердой позиции в отношении лесотундровой зоны и на российских ландшафтных картах и картах растительности.

На ландшафтной карте СССР для вузов м. 1:4000 000 под. ред. А.Г. Исаенко лесотундровая зона выделяется в составе субарктических зональных групп, с подразделением на 5 региональных вариантов, а в Национальном атласе России на ландшафтной карте м. 1:15 000 000, также в группе субарктических ландшафтов, выделен лесотундровые субабритические редколесья с подразделением на два варианта: восточноевропейские и сибирские. Другой подход применяется на карте «Зоны и типы почности России и сопредельных территорий» м. 1:8000 000 под ред. Г.Н. Огуревой, где лесотундра входит в качестве подзоны в таежную зону, с подразделением на восемь вариантов. В соответствии с этим лесотундра выделена в составе таежной зоны и на карте «Зоны и подзоны растительности» м. 1:30 000 000 в Национальном атласе России. В то же время на картах растительности лесотундровая растительность как таковая не выделяется, а у северных границ распространения лесотундровой растительности показывают предтундровые редколесья, а в горных районах – горные подтундровые редколесья. Такой подход реализован и на карте растительности СССР для вузов м. 1:4 000 000, где среди бореальной растительности выделены предтундровые редколесья четырех видов. На карте растительности в Национальном атласе России м. 1:15 000 000 показаны, также в
на основе аэрофотоснимков, несколько видов таких предтундровых редколесий и выделен тундрово-
редколесный пояс в горных районах Восточной Сибири.

Таким образом, лесотундра включается в то субарктическую, то в таежную зону, либо относится к
предтундровым редколесьям. Сравнение контуров этих по-разному трактуемых подразделений ландшафтов
и растительности показывает, что речь идет об одной и той же переходной зоне. Она протягивается с
небольшими перерывами вдоль всей южной границы тундра и северной границы лесов и имеет ширину от 40
dо 300 км, а структура и видовой состав растительности в ней меняются. При значительной протяженности
этой зоны с запада на восток и большому количеству ландшафтных условий, характер структуры экотона
тундра–тайга, как указывалось, зависит в первую очередь от того, леса какого породного состава выходят на
северные рубежи. На ландшафтных картах А. Г. Иванюко подразделяются Восточноевропейские,
Сибирские, Дальневосточные лесотундровые равнинные ландшафты и несколько вариантов горных, а на
карте растительности в Национальном атласе России выделено даже шесть вариантов предтундровых
режимов равнин – в соответствии с изменением с запада на восток породного состава крупных северных
лесов. На европейской территории России это ельовые северотаежные леса, на Кольском полуострове
сменяющиеся к северу березовыми, и им соответствуют прилагательные березовые редколесья Кольского
севера и восточно-европейские березово-еловые и еловые редколесья севера европейской части России,
sменяющиеся в Приуралье, на северной границе еловых и лиственнично-еловых северотаежных лесов,
режимами другого типа – еловыми с лиственницей. Ширина полосы предтундровых редколесий
варьирует от 40-60 км на Кольском полуострове до 120 км в средней части европейского севера и 40-80 км в
Предуралье. В Западной Сибири, где на северные рубежи выходят лиственнично-елово-кедровые северо-
таежные леса, а также участки сосновых и березовых лесов, им соответствуют лиственничные
предтундровые редколесья, не образующие здесь сплошной зоны, а распространенные фрагментарно в
полосе шириной 80–160 км, расширяющейся в районе долины Енисея до 300 км. В Центральной и
Восточной Сибири на северные рубежи выходят преимущественно лиственничные северотаежные леса,
сами по себе обычно редкостойные, и к северу они сменяются предтундровыми редколесьями, в
Центральной Сибири лиственничными с елью, а в Восточной – лиственничными. Они образуют сплошную
полосу, имеющую в районе Ханты-Мансийского автономного округа ширину 80–300 км, в Анабаро-Ленинском районе 80 км,
прерывающуюся на Яно-Индигирской низменности, где раввинные тундры контактируют с гольцово-
тундрово-стланниковым редколесным пояском поясом берез Верхобасской и Верховского; эта полоса вновь
расширяется на Колымской низменности до 100 км и смыкается с лиственничными редколесьями гор
Северо-Востока, переходящими к горным тундрам. На Дальнем Востоке небольшие фрагменты раввинных
редколесий сменяются горными редколесьями и тундрово-редколесными спектрами с участием кедрового
стланника.

Разнообразие структуры экотона тундра-тайга и разные методические подходы к исследованию ее динамики

При различиях ландшафтов и видового состава растительности переходной зоны тундра-тайга, для
каждого из названных районов характерны свои особенности перехода от таежной к тундровой зоне. Так,
на Кольском севере низкорослые кривоствольные, но все еще достаточно сомкнутые березовые леса
создаются в виде отдельных «островов», а затем групп деревьев среди тундровой растительности,
представляющая собой сложное чередование пятен каменистой, лишайниковой, кустарниковой тундры. В
Центральной и Восточной Сибири, где северные лиственничные леса редкостойные, сомкнутость их с
продвижением на север уменьшается еще сильнее, они постепенно переходя в редкие, а затем средние
рекогля зукарусниковых редколесий остаются лишь отдельно стоящие низкорослые деревья.

В горных районах, кроме характера древостоя, на структуру растительности переходной зоны сильно
влияют особенности рельефа. Так, на достаточно крутих склонах хребтов Полярного и Южного Урала
сомкнутые ельевые леса в верхней зоне гор обусловливают относительно четкий переход от лесной к
тундровой зоне [Горчаковский, Шиятов, 1985], а в Хибинах ельвый лес долин на верхних участках склонов
сменяется березовым криволесьем, которое при переходе к платообразным вершинам редет и в тундровую зону
захватывает группы деревьев, отдельно стоящие деревья и кусты [Кравцова, Лошкевская, 2010]. На плато
Путрона структура переходной зоны определяется чередованием окутывающих вершинные поверхности
уступов и идущих от них оседлых с островками тундровой кустарниковой и редколесной растительности.

Естественно, что такое разнообразие видов северной границы леса накладывает отпечаток на методы
исследования их временных изменений, выбор материалов аэрокосмических съемок больной детальности и
возможную точность определения показателей динамики. Так, в Хибинах удалось зафиксировать
продвижение границ леса вверх по склонам на 30 м в период потепления только благодаря привлечению
аэрофотоснимков 1950-х годов, которые сравнивались с современными космическими снимками
сверхвысокого разрешения, причем для обеспечения приемлемой точности определения значений
положения этой границы потребовалось использование точной цифровой модели рельефа [Михеева, 2011].
В то же время на Южном Урале, где верхняя граница еловых лесов выражена более четко, удалось
зафиксировать продвижение границ леса вверх по склону на 60-80 м даже при использовании
разнообразных снимков со спутника Landsat [Шиятов и др., 2001].

С трудностью выявления северной границы леса и ее динамики столкнулись исследователи,
работающие по российской части международного проекта PPS Arctic, среди ключевых районов которого
находятся и рассматриваемые в данной работе участки на Кольском полуострове (в горных районах Хибинского массива и в равнинной части полуострова в районе озера Кантьярв) и на Таймыре (в равнинном районе на участке Ары-Мас и в горном районе на плато Путорана).

В процессе исследований по этому проекту разработаны оригинальные методики автоматического дешифрирования северных лесов по современным детальным космическим снимкам (VHR-снимкам), в частности, методика «Гео/растительность» [Новичихин, Тутубалина, 2010], представляющая собой алгоритм обработки космических снимков сверхвысокого (субметрового) пространственного разрешения совместно с цифровой моделью рельефа для определения пространственного положения деревьев, измерения длины их теней, расчета высоты деревьев и создания производных карт пространственной структуры древостоя – их сомкнутости и полноты, а также для выделения границ распространения лесной и лесотундровой растительности на основе подсчета параметров древостоев – высоты деревьев и расстояния между ними. Поскольку эта методика предусматривает использование современных снимков сверхвысокого разрешения, появившихся в 2000-х годах, она перспективна для будущих исследований динамики границ северных лесов, но не обеспечивает изучения динамики северных лесов в предшествующий период потепления климата. Такие исследования потребовали методических поисков на основе имеющихся материалов.

В работах по нашему проекту опробованы следующие методические подходы:

1. Сравнение разновременных топографических карт

На примере района Кантьярв в равнинной части Кольского полуострова сделана попытка выявления изменений в распространении лесов по топографическим картам 1960 г. (1:50 000) и 1980 г. (1:25 000). Постепенность перехода от леса к тундре на местности влечёт за собой нечёткость отображения северной границы леса как на аэрокосмических снимках, так и на топографических картах. Мелкие пятна криволесий и редколесьев заменяются на картах значковыми обозначениями без выделения контуров и показа их границ; в результате фиксация площадей этих растительных сообществ невозможна. К тому же критерии разделения лесов и межлесов на топографических картах по высоте древостоя (3 м) не совпадают с принятыми экологами проекта PPS Arctic критериями (к лесам относятся древостои высотой более 2 м при расстоянии между деревьями не более 20 м). Поэтому попытка привлечения для исследования динамики границ лесов топографических карт оказалась несостоятельной: Выявленные по разновременным топографическим картам изменения контуров лесов и межлесов при проверке по аэроснимкам, служившим источником для создания карт, оказались ложными и пришлось отказаться от топографического мониторинга динамики северной границы леса.

2. Сравнение разновременных снимков субметрового разрешения — аэрофотоснимков 1950–х—1960-х годов с современными космическими VHR снимками

Однако, малый охват снимков высокого разрешения и трудоемкая визуальная обработка позволят использовать этот вполне успешный метод лишь локально, не переходя к картографированию значительных территорий.

3. Переход от снимков субметрового разрешения к снимкам 30-метрового разрешения

Обращаясь к материалам аэрокосмических съёмок при решении задачи выявления динамики северной растительности при колебаниях климата, необходимо иметь снимки с интервалом в несколько последних десятилетий (охватывающий период потепления), сделанные однотипными съёмочными системами. Из имеющегося фонда космических снимков к таковым относятся снимки со спутников Landsat. Однако их разрешение (30 м) недостаточно для фиксации границ северных лесов. Тщательный анализ, выполненный на примере равнинных районов Кольского полуострова, с привлечением снимков сверхвысокого разрешения со спутника QuickBird (0,6 м), показал, что на снимках Landsat отображаются границы между лесами разных типов (берёзовые лесами с травянистым и кустарниковым нижним ярусом), но не воспроизводятся границы между лесами кустарниковыми и кустарниковой тундрой [Кравцова, Лошкарева, 2010], а именно они и представляют собой северные границы лесов на Кольском полуострове. В то же время лес с кустарниковым напочвенным ярусом и кустарниковые тундры хорошо различимы на снимке QuickBird. Необходимо обеспечить переход от снимка QuickBird к снимку Landsat. Поскольку в 30-метровом пикселе снимка Landsat интегрируются структурные компоненты изображения лесотундровой зоны, образуя спектральную смесь, то предпринят поиск методических подходов,
ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ ЗЕМЛИ: ТЕХНОЛОГИИ ИССЛЕДОВАНИЙ И ОБРАБОТКА ДАННЫХ

предусматривающих разделять эту смесь на составляющие элементы и разрабатывают методы спектральной декомпозиции. Просматривается несколько направлений таких исследований.

а) Анализ изображения снимка QuickBird по площадкам, соответствующим размеру пиксела снимка Landsat. Покомпонентный анализ детального изображения снимка QuickBird в пределах площадок 30×30 м, соответствующих пикселу снимка Landsat, с определением спектральных образов компонентов изображения и их «смеси» в пикселе, помог ответить на вопрос – почему на снимках Landsat не видны северные границы лесов. Причина состоит во взаимопогашающем влиянии яркости крон деревьев и их теней: большая яркость изображения крон и низкий уровень яркости теней, суммируясь, дают яркость, соответствующую нижнему кустарниковому ярусу в лесу и кустарничковой тундре [Кравцова, Лошкарева, 2010].

б) Спектрометрические эксперименты для выявления влияния количественных соотношений компонентов экотона тундра–тайды на спектральный образ смеси. Для выявления влияния различных количественных соотношений компонентов экотона тундра–тайды на спектральный образ смесей Л.И. Михеевой и А.Е. Новичихиным проведен натурный полевой эксперимент по спектрометрированию компонентов экотона тундра–тайды (камни, лишайники, кустарники, древесная растительность) и их сочетаний в разных количествах, что позволило выявить сочетания компонентов экотона, разделяемые на снимках по спектральным характеристикам.

в) Декомпозиционный подход к созданию карт структуры экотона тундра–тайды. На основе результатов натурного спектрометрического эксперимента на примере эталонного участка Тульюк в Хибинах Л.И.Михеевой разработана методика создания с помощью ASTER, Landsat (с использованием эталонных снимков сверхвысокого разрешения) карты растительности с указанием количественных соотношений компонентов в разных типах растительности. Такая карта в дальнейшем может быть использована для мониторинга изменения структуры экотона, когда эти изменения достигнут определенных пределов.

g) Декомпозиционный подход к созданию карт сомкнутости древостоя. Другой вариант декомпозиционного подхода удалось применить для создания карт растительности экотона тундра–тайды в другом районе – для эталонного участка Ары-Мак на Таймыре, где структура экотона имеет иной характер. Если для лесотундры Кольского Севера характерно мозаичное сочетание птенных каменистостей, лишайниковой, кустарничковой тундры и «островков» березовых редколесий, то в исследуемом районе Таймырская лесотундра образуют лиственные редины и отдельные деревья лиственницы на ровной поверхности тундры, где наномоночайность напочвенного покрова не создает на снимке пятнистости, а структура изображения определяется пятнистостью деревьев и их тенями на относительно ровном фоне обычно лишайниково-кустарничкового покрова. Штриховая структура изображения теней на снимках сверхвысокого разрешения при разной густоте штрихов обусловливает различную яркость изображения на снимке Landsat и задача состоит в нахождении связи между этими характеристиками, т. е. между яркостью пиксела Landsat и количественными характеристиками плотности насыщенных, их сомкнутости. На примере участка Ары-Мак Л.Ю.Тюкавиной удалось найти такую связь с использованием материалов полевых наблюдений и на этой основе разработать методику картографирования сомкнутости насаждений по снимкам Landsat [Тюкавина, 2011].

Для этих целей изображение теней деревьев на снимке Ikonos было выделено от остальных объектов, изображавшихся на снимке (по специальной методике, разработанной А.Е.Новичихиным, созданы «маска теней»; на основе подсчета площади крон по схемам наземного картографирования на пробных площадках и определения площади теней на снимках выявлено количественное соотношение площадей крон и их теней (для использоаванного снимка Ikonos оно составило около 1:2), что позволило перейти от площади теней к сомкнутости древостоя и составить карту сомкнутости по снимке Ikonos. Далее для эталонных площадок, выделенных на этой карте в пределах различных классов сомкнутости, найдены соответствующие им пикселы Landsat, при анализе спектральных кривых которых обнаружена связь сомкнутости с яркостью в средней инфракрасной зоне. Установленное соотношение между классами сомкнутости древостоя и уровнем яркости в средней инфракрасной зоне Landsat позволило составить карту сомкнутости древостоя для всей площади, покрытой снимком Landsat. Так реализован перехок Ikonos–Landsat для этого типа тундра, где структура переходной зоны тундра–тайды определяется сомкнутостью древостоя. Декомпозиционный подход здесь заключается в нахождении по яркости пиксела Landsat соответствующей ей суммарной площади теней деревьев, и следовательно, сомкнутости древостоя.

Однако, как и в случае с пятнистыми тундрами Кольского полуострова, разработанный метод может быть рекомендован для дальнейшего мониторинга динамики экотона в будущем, но его не удается применить для ретроспективных исследований динамики экотона за прошедший период потепления климата, поскольку старые снимки MSS/Landsat не имели среднего инфракрасного канала, и кроме того, не было снимков сверхвысокого разрешения для обеспечения эталонных изображений разной сомкнутости.

1. Сравнение разновременных изображений вегетационного индекса NDVI

Поскольку методические поиски и находки, оказавшиеся результативными для будущего, перспективного мониторинга, не обеспечили изучения изменений в прошлом, для ретроспективных исследований динамики растительности за прошедший период пришлось обратиться к испытанным,
достаточно просто и универсальному методу исследований состояния растительности – расчету индексных изображений NDVI, а для изучения динамики растительности – к определению разности разновременных NDVI.

Однако, для результата применения этого метода необходимо соблюсти целый ряд условий и ограничений, направленных на отделение среды выявленных изменений растительности тех из них, которые представляют целевой интерес в данных исследованиях, связанных с климатическими колебаниями.

Получение производных изображений разности разновременных значений NDVI для выявления изменений растительности за период потепления было опробовано в обоих районах – на Таймыре и на Кольском полуострове.

Для Таймыра, где изменение (увеличение) значений NDVI означает увеличение сомкнутости древостоя, или их сгущение с разрастанием кустарничкового яруса, важно отделить на снимке участки древостоя от спектрально близких к ним бугристых и полигональных тундр, где формы мезо- и микрорельфа обусловливают теневую составляющую спектрального образа тундра, приближающего его к спектральному образу редколесий. В предложенной А.Ю.Тюкавиной методике выход был найден в использовании зимне-весеннего снимка, на котором тундры находятся под снежным покровом и в результате участки лесов и редколесий хорошо отграничиваются от тундра. Дальнейший анализ изменений яркости проводился уже только в пределах лесов и редколесий на основе получения разности значений NDVI для разных лет [Тюкавина, 2011]. Исследование показало увеличение сомкнутости древостоя на низких террасах р. Хатанги.

На участке Кольской тундры в районе озера Каненгылык потребовалась целая цепочка действий для выделения среди всех зафиксированных изменений тех, которые представляют целевой интерес. В методике, разработанной А.Р.Лошкаревой, ограничения ставились на этапе подбора снимков (идентичность по дате съемки в разные годы, анализ погодных условий, предшествовавших съемке), на этапе их обработки (обязательное выполнение радиометрической коррекции, создание масок не-растительных объектов – озер, снежников, облаков и их теней – для исключения их из анализа). На этапе интерпретации исключались из анализа изменения растительности из-за различий погодных условий в годы съемки, в частности, площади вблизи нестаящих снежников; тщательно анализировались и исключались антропогенные изменения растительности. В результате по обширной территории выявлены участки повышения значений NDVI, соответствующие увеличению густоты кустарничковой растительности на границах между кустарничками и лишайниковыми тундрами, продвижению кустарничковых тунд на место лишайниковых [Лошкарева, 2011].

Заключение
Опыт исследований динамики северной границы леса и структуры экотона тундра–тайга в связи с климатическими колебаниями на основе наземных и дистанционных методов, выполненных в Московском университете по программе PPS Arctic, показал значительные методические трудности решения этой задачи по дистанционным материалам, имеющимся в современном фонде аэрокосмических снимков. Дополнительные осложнения вызывают региональные различия структуры переходной зоны тундра–тайга, вытянутой на тысячи километров в западном и восточном направлении по границе заповедника России. Потребовалась разработка целого ряда регионально адаптированных методических подходов. Их основе получены новые данные об изменениях северной растительности в период потепления, в частности выявлено продвижение верхней границы леса на 30 м вверх по склонам в Хибинах, сгущение древесной и кустарничковой растительности в лесотундровой зоне равнинной части Кольского полуострова, где отмечено продвижение лишайниково-кустарничковой тундры на место лишайниковой тундры, стущение древостоя в разреженных лиственичных лесах и рединах в долине Хатанги в южной части Таймыра.

ЛИТЕРАТУРА
5. Михеева А.И. Пространственная изменчивость положения верхней границы леса в Хибинах (по материалам дистанционного зондирования) // Вестн. Моск. ун-та. Сер. 5. География. 2010. №4. С.18–22.
ИСПОЛЬЗОВАНИЕ КОСМИЧЕСКИХ СНИМКОВ ДЛЯ ОЦЕНКИ СОСТОЯНИЯ ТЕРРИТОРИИ ЛЕСОХОЗЯЙСТВЕННОГО КОМПЛЕКСА РЕСПУБЛИКИ КОМИ

Жаринов С.Н., Голубева Е.И.
Географический факультет
Московский Государственный университет имени М.В. Ломоносова
Москва, Россия
E-mail: serega313@rambler.ru egolubeva@gmail.com

SATTELITE IMAGERY USING IN ASSESSMENT THE STATUS OF THE FORESTRY COMPLEX TERRITORY OF THE KOMI REPUBLIC

Jarinov S.N., Golubeva E.I.
Faculty of Geography
M.V.Lomonosov Moscow State University
Moscow, Russia
E-mail: serega313@rambler.ru egolubeva@gmail.com

Abstract. Reviewed the possibility of using satellite imagery in analyze of forest structure and forest management system, in monitoring of status of Komi Republic’s forest resources.

Komi Republic – one of the leading forest regions in Russian Federation, in the structure which dominates valuable coniferous spruce forests and in which forest management takes the leading role in socio-economic development of region. The analyze of the current state of Komi Republic’s forests is made, reviewed the possibility of satellite imagery using in assessment of forest resources, for efficiency improvement of forest fire protection service, for taxation work and for analyze of forest management system.

Республика Коми – один из ведущих лесных регионов России, в структуре которого преобладают ценнейшие темнохвойные естовые леса. Лесное природопользование играет большую роль в развитии региона [Леса Республики Коми, 1999; Пахучий, 2002].

Цель работы – рассмотреть возможности использования космических снимков для анализа структуры лесного фонда, системы лесопользования и состояния лесных ресурсов Республики Коми.

Для этого решались следующие задачи:
• провести анализ современного состояния лесных ресурсов в Республике Коми;
• показать возможность применения космических снимков для оценки лесных ресурсов и системы лесопользования.

Роль лесопромышленного комплекса в Республике Коми

Республика Коми – один из ведущих лесных регионов России и относится к числу немногих лесных районов, в структуре которых преобладают ценнейшие темнохвойные естовые леса. Общая площадь лесов Республики Коми на 1 января 2005 г. составляла около 30 млн гектаров, или 4% площади всех лесов России. Для лесозаготовок выделено более трех четвертей лесного фонда с запасами 3 млрд м³.

Лесопромышленный комплекс, представленный лесозаготовительной, деревообрабатывающей, целлюлозно-бумажной отраслями является вторым по значимости в экономике после топливно-энергетического комплекса. На долю лесопромышленного комплекса в 2005 г. приходилось 26% от общего объема производства, 20% валютной выручки и 31% численности промперсонала. Значительно ниже сложились аналогичные показатели по России (4,4%, 5% и 8% соответственно). Этот сегмент
промышленности не только обеспечивает своей продукцией все отрасли экономики, но и оказывает непосредственное влияние на социальный, культурный и материальный уровень жизни населения [Лесной кодекс Российской Федерации, 2006].

Республика Коми занимает важное место в леспромышленном комплексе России: наиболее значимы в объемах российского производства бумаги (14%), фанеры (13%) и древесностружечных плит (9%).

В настоящее время в республике выпускаются около 80 видов продукции леспромышленного комплекса, а до 90-х годов вырабатывались еще и отдельные виды лесохимической продукции, основанные на отходах лесозаготовок и лесопиления, такие как дрожжи кормовые, скипидар, фурункул, а также живица. В региональной программе развития и реструктуризации лесного комплекса вновь намечено развитие химической и химико-механической переработки древесных отходов.

Влияние экономического кризиса 90-х годов леспромышленный комплекс пережил более остр, чем другие отрасли промышленности. Первоначальной причиной этого кризиса явилось значительное сокращение объемов производства, обусловленное низким платежеспособным спросом внутреннего рынка. Спад производства в лесозаготовительной и деревообрабатывающей отраслях существенно опережал общепромышленные темпы снижения выпуска продукции. В результате выпуск продукции лесопромышленного комплекса в 2003 г. по сравнению с 1990 г. снизился на 11%, при этом в лесозаготовительной сократился в 2,7 раза, деревообрабатывающей - на 45%, а целлюлозно-бумажной отрасли возрос на 62%.

Посткризисное улучшение общеэкономической конъюнктуры положительно отразилось на леспромышленном комплексе. Уже в 1999г. рост производства в отрасли составил 117,4% к уровню предыдущего года. В последние пять лет в развитии комплекса обозначились очевидные позитивные тенденции: в 2003г. объемы производства по сравнению с 1998г. возросли на 53% при снижении численности занятых на 13%.

Мониторинг лесов.

Лесной мониторинг в соответствии с кругом решаемых задач и функциональным разделением ведомственных структур, подразделяется на мониторинг лесных ресурсов и земель лесного фонда, лесопожарный, специальные виды (в том числе мониторинг состояния лесов в зонах промышленных выбросов и радиационного загрязнения и т.п.). Мониторинг малоосвоенных лесов (ведется в труднодоступных лесах методами дистанционного зондирования) и лесной мониторинг, в рамках международных программ и соглашений. Общая структура лесного мониторинга в целом соответствует сегодняшним запросам, но его техническая обеспеченность и реализация пока далеки от должного уровня. В настоящее время для проведения работ по оценке состояния лесов в рамках лесного мониторинга используют все существующие потоки информации. Мониторинг лесов представляет собой систему наблюдений, оценки и прогноза состояния и динамики лесного фонда в целях государственного управления в области использования, охраны, защиты лесного фонда, воспроизводства лесов и повышения их экологических функций.

Лесопожарный мониторинг является частью системы информационного обеспечения службы охраны лесов от пожаров и обеспечивает слежение за возникновением пожаров, регистрацию их последствий, анализ данных и прогнозирование пожарной опасности. Ведение лесопожарного мониторинга осуществляется подразделениями ФГУ «Авиалесоохрана». Этот блок лесного мониторинга получил наибольшее развитие. Создана специальная система, позволяющая постоянно, в режиме реального времени, работать со спутниковыми данными и результатами их обработки.

Основные задачи, решаемые с помощью этой системы:
- получение спутниковых данных;
- оперативная обработка данных и предоставление их лесничествам, лесопользователям и органам государственной власти;
- интеграция результатов обработки спутниковых данных с информацией, полученной из других источников.

Лесопатологический мониторинг заключается в оперативном слежении за лесопатологическим состоянием лесов - нарушением их устойчивости, численностью, распространением и масштабами повреждения лесов вредными насекомыми, возбудителями болезней и другими природными и антропогенными факторами ослабления и гибели лесов, за динамикой этих процессов. На основании информации о динамике этих процессов обеспечивается выявление патологических изменений состояния насаждений, оценка и прогноз развития ситуаций, необходимые для своевременного принятия решений по лесосанитарным и другим лесохозяйственным мероприятиям. Это направление лесного мониторинга обеспечивает качественную оценку текущих изменений лесопатологического состояния лесов.

Служба, осуществляющая лесопатологический мониторинг, опирается в своей работе на лесную охрану, а также на подразделения авиационной охраны лесов, осуществляющие патрулирование. Лесничие, их помощники, техники, лесники охраняют леса, следят за санитарно-лесопатологической обстановкой на данной территории и обо всех выявленных случаях заболевания насаждений или повреждениях их насекомыми-вредителями сообщают в лесопатологическую службу.

Площадь земель лесного фонда республики на 01.01.2006 г. составляет 38678,6 тыс. га, или 93% территории республики. В результате естественного и искусственного облесения продолжается процесс
ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ ЗЕМЛИ: ТЕХНОЛОГИИ ИССЛЕДОВАНИЙ И ОБРАБОТКА ДАННЫХ

увеличения лесопокрытой площади. С 1961 г. она увеличилась на 2,95 млн. га. Надо отметить, что происходит процесс заболевания земель лесного фонда, что является следствием концентрированных рубок в прошлом и нарушения лесохозяйственных требований в настоящее время. Однако, в последние годы имеет место тенденция к уменьшению площади болот. Так в сравнении с учетом лесного фонда 1999 года площади болот уменьшились на 5,9 т га.

Требования к материалам аэрокосмических съемок

Технической основой лесоинвентаризационных работ, выполняемых в процессе повторного лесоустройства и при проведении повторной дистанционной лесоначертатации, являются материалы fotografических или цифровых аэрокосмических съемок, которые используются при выполнении полевых и камеральных съемочно-геодезических, таксационных и картографических работ. По снимкам производится:

- составление абрисов, опознавание границ, просек, визиров, ходовых линий в процессе натурной таксации, опорных точек, необходимых для трансформации снимков при включении их в геоинформационную систему;
- полевое, поликамеральное и камеральное контурное и лесотаксационное аналитическое, аналитико-измерительное или автоматизированное дешифрирование с целью определения или уточнения границ таксационных выделов и их таксационных характеристик;
- составление лесоэстрактационных планшетов и других лесных карт.

Используемые материалы аэрокосмических съемок должны быть, как правило, спектроэнергетические или многоспектральные и отвечать следующим требованиям:

a. При устройстве лесов подоны интенсивного лесного хозяйства, устроенных ранее по I-II разрядам, пространственное разрешение аэроснимков должно быть не менее 1,0 метра, а масштаб используемых при полевых и камеральных работах бумажных копий аэроснимков (контактных или увеличенных) и изображений на экране компьютера не меньше 1:10 000;

b. При устройстве лесов по III разряду в подзоне интенсивного и перспективного лесопользования и лесного хозяйства - аэроснимки с пространственным разрешением не хуже 1,5 м, а масштаб бумажных копий не меньше 1:15 000;

c. При устройстве лесов по III разряду в объектах или частях их с экстенсивным ведением лесного хозяйства и лесопользованием аэроснимки должны иметь пространственное разрешение на местности не хуже 2 м, а масштаб используемых контактных или увеличенных бумажных копий снимков и изображений на экране компьютера не меньше 1:25 000;

d. При повторной дистанционной лесоинвентаризации должны использоваться цифровые космические снимки с пространственным разрешением на местности не хуже 5 – 10 м. Масштаб используемых при таксационном дешифрировании увеличенных снимков или изображений на экране компьютера должен быть не меньше 1:40 000;

e. Аэроснимки должны обеспечивать получение устойчивого стереоэффекта и измерение по стереомоделям высот деревьев с среднеквадратичной ошибкой, не превышающей +1-1.5 м. Бумажные копии снимков или их частей, используемых при полевом и камеральном дешифрировании, должны иметь размеры, как правило, не более 30х30 см, удобные для работы с ними в полевых условиях и при выполнении стереоанализов и измерений на штатных стереоскопических приборах.

Методология использования материалов аэрокосмических съемок

Дешифрирование материалов аэрокосмических съемок, получаемых в бумажном виде (фотоотпечатки, ксерокопии, распечатки и пр.), производится традиционными визуальными и визуально-инструментальными методами [Княжников, 1997].

Методология дешифрирования материалов аэрокосмических съемок должна быть ориентирована на получение результатирующей информации в ГИС-формате. При наличии возможности все процессы, связанные с дешифрированием и обработкой их должны производиться в среде ГИС.

Дешифрирование аэрокосмических снимков, получаемых в цифровом виде или преобразованных в цифровой виде, производится с использованием специализированных программ и автоматизированных методов и ГИС-технологий, обеспечивающих, как выполнение традиционного аналитико-измерительного дешифрирования в интерактивном режиме на экране компьютера, так и автоматизированную классификацию изображений и совместную обработку разновременных снимков с целью выявления по ним произошедших изменений в лесном фонде в результате сплошнолесосечных рубок, пожаров и других природных и антропогенных воздействий, приведших к трансформации лесопокрытых земель в непокрытые лесом и нелесные. Результаты классификации должны быть использованы для уточнения разделения территории на лесотаксационные выделы.

Основным методом дешифрирования цифровых изображений следует считать интерактивный, основанный на сочетании знаний и опыта дешифровщика и возможностей компьютерных технологий.
Модели актуализации таксационных описаний предыдущего лесоустройства за счет роста и развития лесных экосистем

Актуализация таксационных описаний предыдущего лесоустройства является составной частью методологии повторного лесоустройства. Она проводится внесением поправок в таксационные характеристики выделов с учетом происшедших в них изменений за межревизионный период, основными причинами которых являются: естественный рост насаждений и развитие лесных экосистем, антропогенные и природные воздействия на них и трансформация земель лесного фонда [Лесной кодекс Российской Федерации..., 2006; Методические рекомендации по инвентаризации..., 2006].

Актуализация средней высоты и среднего диаметра преобладающих и составляющих пород, а также средней высоты проростка и подлеска и динамики лесовозобновления на не покрытых лесом землях осуществляется по моделям, которые представляют собой заранее составленные таблицы экстраполонных коэффициентов. Она может производиться в автоматическом и ручном режиме. Средняя высота яруса, возраст и засад древесности на 1 га определяются расчетным путем. Все остальные таксационные показатели - класс бонитета, тип леса, тип лесорастительных условий, состав древостоя, полнота, класс товарности, состав и густота проростка и подлеска актуализируются при натурной таксации и дешифрировании материалов аэрокосмических съемок. Период, за который производится камеральная актуализация данных, не должен превышать при лесоустройстве в подзоне интенсивного лесного хозяйства и интенсивного и перспективного лесопользования 15 лет, в подзоне экстенсивного лесопользования -20 лет, в зоне дистанционной лесоинвентаризации – 30 лет.

При подготовительных работах на основе информации о лесотаксационных характеристиках выделов, содержащихся в базах таксационных данных прошлого лесоустройства и районированных таблиц хода роста составляются следующие модели:

- динамики с возрастом средних диаметров на высоте 1.3 м для преобладающих и составляющих пород;
- динамики с возрастом средних высот для преобладающих и составляющих пород;
- динамики с возрастом высоты подроста и подлеска;
- динамики хода лесовозобновления на галях, вырубках, в погибших насаждениях от воздействия насекомых-вредителей, болезней, ветровых эмиссий.

Модели составляются для насаждений всех преобладающих пород с подразделением их по группам типов леса типов условий местопроизрастания и двум группам полнот 0.7-1.0 и 0.6 и менее, а модели хода лесовозобновления – по группам типов леса.

При актуализации материалов лесоустройства в обязательном порядке используются данные разных видов мониторинга (лесопожарного, лесопатологического, охраны и состояния лесопользования) и текущих изменений, учтенных лесничествами и арендаторами.

В общей методологии повторного лесоустройства актуализация данных таксации предыдущего лесоустройства должна использоваться в сочетании с другими методами таксации в качестве дополнительной информации при установлении обобщенной таксационной характеристики выдела. Точность обновленной таксационной характеристики выделов и их контуров, полученной путем актуализации, должна находиться в пределах нормативных требований, установленных лесоустроительной инструкцией.

Лесные пожары

Прогнозировать ситуацию и решать вопросы оперативного маневрирования и передислокаций сил и средств пожаротушения помогают система регистрации грозовых разрядов и система «СканЭкс» для дистанционного обнаружения лесных пожаров.

Сопоставление снимков, полученных через спутниковую систему, с координатами грозовых разрядов, получаемых через грозопеленгаторную систему, позволяет довольно точно определять как сами лесные пожары, так и предполагаемые места их возникновения, что привело к более эффективному использованию летательных аппаратов, сил и средств пожаротушения.

Применение новых технологий в борьбе с лесными пожарами позволяет рационально планировать полеты и направлять авиатехнику в конкретные и предполагаемые места загораний. Эта методика существенно экономит средства на аренду летательных аппаратов, ГСМ, а, самое главное, дает возможность обнаруживать лесные пожары на начальной стадии развития и принимать эффективные меры по их локализации и ликвидации.
Требования к точности лесотаксационных работ
Таксация леса при повторном лесоустройстве выполняется одним из следующих способов:

а. Наземным газометрическим - измерительным в сочетании с полевым дешифрированием аэро- или космических снимков (подзоны интенсивного лесного хозяйства и интенсивного и перспективного лесопользования);

б. На основе рационального сочетания наземной газометрической - измерительной трактовки с анализом - измерительных дешифрирований космических снимков и актуализацией лесотаксационных данных на текущие изменения и естественный рост насаждений по моделям роста (подзоны интенсивного лесного хозяйства и интенсивного и перспективного лесопользования);

c. Камеральным аналитико-измерительным дешифрированием аэро- или космических снимков в сочетании с актуализацией космических снимков на текущие изменения и естественный рост насаждений по моделям роста и развития лесных экосистем (подзоны экстенсивного лесного хозяйства и лесопользования);

d. Наземным газометрическим без аэро- и космических снимков (применяется в исключительных случаях по выделенным зонам). Повторная дистанционная инвентаризация резервных лесов производится аналитическим (интерактивным, автоматическим) дешифрированием космических снимков в сочетании с методом актуализации лесотаксационных данных предыдущей лесоинвентаризации по моделям роста и развития лесных экосистем и данным лесотаксационных мониторингов (лесопожарного, лесопатологического, оценки порядка и состояния лесопользования).

Для анализа современного состояния лесов и их динамики на модельной территории за 10- летний период был использован разновременные космические снимки Landsat (http://glcfapp.umiacs.umd.edu , администратор – University of Maryland (США)).

На космических снимках с помощью программы Multispec было выделено 7 зон: водные объекты и болота, таёжные территории, вековые леса, болотные леса, молодые леса, малоколичественные леса, старые рубки, молодые рубки и антропогенные объекты. Затем в процессе полевых исследований уточнялись данные об изучаемой территории. Программа записывает число пикселей в каждом выделенном классе, поэтому обработка снимков позволяла вычислить процентное соотношение площадей различных объектов и проследить динамику происходящих процессов.

Проведенные исследования позволяют сделать следующие выводы:

- площадь, занимаемая хвойными и мелколиственными породами, уменьшилась;
- заболеваемость хвойных лесов увеличилась;
- площади старых рубок сократились;
- площади молодых и свежих рубок возросли.

Характеристики лесов и не покрытых лесом и неселенных земель изменяются в силу естественных процессов роста насаждений и развития лесных экосистем, так и при воздействии на них комплекса природных и антропогенных факторов (пожары, вредители, рубки и пр.), поэтому требуется регулярное проведение актуализации всего комплекса лесотаксационной и картографической информации. Обычно в этих целях проводят через 10 - 15 (20) лет повторные лесоустроительные работы примерно по той же технологии, что и предыдущие. В последние 20 лет экономика страны и мощности лесоустроительных организаций не обеспечивают проведение работ на всей территории страны с требуемой периодичностью, поэтому применение космических снимков в оценке качества лесных земель особенно актуально на промежуточных этапах.

Литература

4. Методические рекомендации по инвентаризации лесов при повторном лесоустройстве (лесоинвентаризации) с учетом структуры лесов, интенсивности лесного хозяйства и лесопользования. – М.: Федеральное агентство лесного хозяйства, 2006.
Abstract. The article deals with investigation of the Chel eken Peninsula (the Caspian Sea) shore formation and dynamics during recent 150 years, development of a local problem-oriented GIS (its aim and structure), impact of sea level fluctuations on the economic infrastructure and environmental situation of the peninsula. The issue of inundation/water level rise within the area of oil and gas fields of the Chel eken Peninsula is of particular importance.

In the work, the topics are considered with respect to the formation and dynamics of the Chel eken Peninsula’s shoreline (the Caspian Sea) over the last 150 years, the development of a local problem-oriented GIS (its purpose and structure), the impact of sea level fluctuations on the economic infrastructure and environmental situation of the peninsula. The issue of inundation/water level rise within the area of oil and gas fields of the Chel eken Peninsula is of particular importance.

In the article, the Chel eken Peninsula (the Caspian Sea) is considered, the development of a local problem-oriented GIS (its purpose and structure), the impact of sea level fluctuations on the economic infrastructure and environmental situation of the peninsula. The issue of inundation/water level rise within the area of oil and gas fields of the Chel eken Peninsula is of particular importance.

The article deals with the investigation of the Chel eken Peninsula (the Caspian Sea) shore formation and dynamics during recent 150 years, development of a local problem-oriented GIS (its aim and structure), the impact of sea level fluctuations on the economic infrastructure and environmental situation of the peninsula. The issue of inundation/water level rise within the area of oil and gas fields of the Chel eken Peninsula is of particular importance.

The article presents GIS of the dynamics of the Chel eken Peninsula in the vibration level of the Caspian Sea over the past 150 years. The article deals with the investigation of the Chel eken Peninsula (the Caspian Sea) shore formation and dynamics during recent 150 years, development of a local problem-oriented GIS (its aim and structure), the impact of sea level fluctuations on the economic infrastructure and environmental situation of the peninsula. The issue of inundation/water level rise within the area of oil and gas fields of the Chel eken Peninsula is of particular importance.

The article presents GIS of the dynamics of the Chel eken Peninsula in the vibration level of the Caspian Sea over the past 150 years. The article deals with the investigation of the Chel eken Peninsula (the Caspian Sea) shore formation and dynamics during recent 150 years, development of a local problem-oriented GIS (its aim and structure), the impact of sea level fluctuations on the economic infrastructure and environmental situation of the peninsula. The issue of inundation/water level rise within the area of oil and gas fields of the Chel eken Peninsula is of particular importance.

The article presents GIS of the dynamics of the Chel eken Peninsula in the vibration level of the Caspian Sea over the past 150 years. The article deals with the investigation of the Chel eken Peninsula (the Caspian Sea) shore formation and dynamics during recent 150 years, development of a local problem-oriented GIS (its aim and structure), the impact of sea level fluctuations on the economic infrastructure and environmental situation of the peninsula. The issue of inundation/water level rise within the area of oil and gas fields of the Chel eken Peninsula is of particular importance.

The article presents GIS of the dynamics of the Chel eken Peninsula in the vibration level of the Caspian Sea over the past 150 years. The article deals with the investigation of the Chel eken Peninsula (the Caspian Sea) shore formation and dynamics during recent 150 years, development of a local problem-oriented GIS (its aim and structure), the impact of sea level fluctuations on the economic infrastructure and environmental situation of the peninsula. The issue of inundation/water level rise within the area of oil and gas fields of the Chel eken Peninsula is of particular importance.

The article presents GIS of the dynamics of the Chel eken Peninsula in the vibration level of the Caspian Sea over the past 150 years. The article deals with the investigation of the Chel eken Peninsula (the Caspian Sea) shore formation and dynamics during recent 150 years, development of a local problem-oriented GIS (its aim and structure), the impact of sea level fluctuations on the economic infrastructure and environmental situation of the peninsula. The issue of inundation/water level rise within the area of oil and gas fields of the Chel eken Peninsula is of particular importance.
На широтном профиле в рельефе хорошо прослеживаются береговые линии туркменской и максимальной стадий ранней хвалыни (на абсолютных высотах 10-12 и 50 м соответственно) к западу от водораздела, и максимальной стадии поздней хвалыни (на абсолютной высоте 0 м) и новокаспийской трансгрессии (на абсолютной высоте -20 м) к востоку от водораздела.

Берега Челекена можно подразделить на три участка — центральный (абразионный), северный и южный (аккумулятивные).

Важнейшей причиной изменений берегов Каспийского моря, на протяжении столетий, являются значительные колебания его уровня. Режим колебаний уровня Каспийского моря до сих пор остается предметом пристального внимания и исследования. Влияние колебаний «зеркала воды» на динамику и морфологию берегов весьма велико, так как с ними связана не только хозяйственная деятельность человека в береговой зоне, но и на состояние уникальных ландшафтно-экологических систем Каспия.

По данным на конец 2010 – начало 2011 годов уровень Каспийского моря соответствует отметке -27.3 м. При понижении моря происходит обмеление подходов к портам, усложняются условия судоходства, изменяется режим заповедников и запасы рыбы. Повышение уровня приводит к затоплению прибрежных территорий, на которых находятся поселения людей, сельскохозяйственные угодья и промышленные предприятия.

На основании анализа научной литературы и картографических источников выявлено, что уровень моря за последние 2000-2500 лет не поднимался выше отметки -25 м.

Примерно 2500 лет назад началось формирование современных ландшафтов в бассейне Каспия и, как следствие, современных или близких к ним параметров водного баланса. Экстраполируя полученные результаты на современную эпоху можно сделать вывод о том, что начавшийся в 1978 г. подъем уровня не превысит отметку -25 м. [Рычагов, 1994].

Рис. 1. Широтный и меридиональный профили полуострова Челекен

Рис. 2. Структура БД ГИС динамики берегов п-ова Челекен

Для изучения динамики явлений и процессов, т.е. их возникновения, развития, изменения во времени и перемещения в пространстве, используют разновременные карты, на которых одни и те же объекты
изображены в разные моменты времени. Основным источником информации для создания локальной геоинформационной системы (ГИС) полуострова Челекен послужили разновременные топографические карты, морские навигационные карты и данные дистанционного зондирования.

Известно, что основные топографические карты на территории нашей страны создавались в шестидесятых годах, а обновлялись последний раз в 70-80х годах прошлого столетия. Естественно, что возникла острая необходимость в привлечении данных дистанционного зондирования, которые дают представление о современных ландшафтах и происходящих процессах на исследуемой территории. Данными дистанционного зондирования (ДДЗ) для исследования динамики берегов полуострова Челекен, послужили снимки ресурсных спутников «Landsat».

В рамках проекта была создана локальная проблемно-ориентированная ГИС, выполняющая функции научно-справочной системы, включающая в себя обобщенные научные знания об отображенных в тематической базе данных природных и социально-экономических явлениях, структура которой представлена на рис.2.

Еще одним важным источником для ГИС стали материалы международной Каспийской Экологической Программы (Caspian Environment Programme- «CEP», www.caspianenvironment.org), которая выполнила трансграничный диагностический анализ Каспия (ТДА). Приоритетным экологическим направлением в Туркменском секторе Каспийского моря призвано предупреждение и минимизация загрязнения нефтью и газа, промышленных и муниципальных сбросов неочищенных сточных вод в море.

В рамках ГИС проекта были разработана и построена серия карт изучаемой территории, а именно:

- Карта типов берегов п-ова Челекен;
- Карта угрозы затопления объектов инфраструктуры п-ова Челекен;
- Гипсометрическая карта п-ова Челекен и хозяйственное использование территории;
- Прогнозная карта п-ова Челекен и хозяйственное использование территории.

Одна из них – карта типов берегов – является одним из основных результатов исследования (рис. 3). Карта отражает морфологию побережья, содержит современные типы берегов, а также типы берегов при прогнозируемом уровне Каспийского моря до отметки -25 м аб.

Абразионные берега с активным клином наблюдаются в центральной части западного побережья полуострова. Недавнее поднятие уровня моря спровоцировало активацию абразион на данном участке. В настоящее время здесь наблюдается отвесный клиф, высотой от 10 до 15, местами до 20 метров. Приклоненный пляж узкий, от 1 до 10 метров, часто затопляется во время сильных нагонов и штормов [Курбанов, Моисеева, 2011].

Береговой обрыв в районе Лбища продолжается на север до Большого Акыра, достигая здесь высоты около 1 м. Дальше на север расположен участок берега с отмываем клином, который постепенно сходит на нет близ лагуны Кертыха. На юге отмывший клиф распространяется от города Челекен, где высота его составляет 3-4 м, и далее до полуострова Дервиш, переходя в широкий пляж. Челекенские косы в действительности представляют собой береговые бары, причлененные к коренному берегу [Леонтьев и др., 1977].

Аккумулятивные пляжевые берега развиты в центральной части западного берега Южной Челекенской косы. Участок представляет собой аккумулятивный берег с широким песчаным пляжем, более 300 м. в ширину, который через небольшой уступ переходит в выровненную поверхность, образующую основание косы.

Широко распространены на полуострове лагуны берегового типа. На западном берегу Северной Челекенской косы повсеместно развиты вытянутые вдоль уреза лагуны, отложенные от моря песчаным валом, высотой от 1,5 до 2 м и шириной до 15 м. Песчаные вали, частично заросшие кустарником, вытянуты параллельно береговой линии, за ними расположены узкие лагуны. В летнее время лагуны пересыхают и превращаются в мокрые солончаки, местами заросшие тростником [Курбанов, Моисеева, 2011].

На западном берегу Северной Челекенской косы повсеместно развиты вытянутые вдоль уреза лагуны, отложенные от моря песчаным валом, высотой от 1,5 до 2 м и шириной до 15 м. Восточный берег косы, обращенный в сторону Красноярского залива, слабо подвержен воздействию волнения, вследствие чего берег здесь сильно отмельный, фестончатый, за счет навигации ветром золовых кос.

В настоящее время, большая часть западного берега Южно-Челекенской косы морфологически подобна Северной. Отличается от последней дистальным окончанием, которое не отклоняется на восток и значительная часть которой занята лагунами.

В районах, защищенных от ветрового волнения (побережье Южного Челекенского и Северного Челекенского заливов), основным рельефообразующим процессом являются стонно-нагонные явления. На этих участках берега сильно отмельные (осушные). На таких берегах сложно выделить саму береговую линию.

Кроме того, в рамках проекта, была составлена гипсометрическая карта полуострова Челекен и хозяйственное использование территории, а так же прогнозная карта данной территории. Прогнозная карта является комплексной синтетической, на ней совмещены несколько крупных тематических слоев. Прежде всего, слой выявленных гипотетических прогнозных зон затопления и осушения при повышении и понижении уровня моря до обозначенных для каждой зоны значений с учетом гипсометрии, тематические слои палеогеографических данных и хозяйственного использования территории.
ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ ЗЕМЛИ: ТЕХНОЛОГИИ ИССЛЕДОВАНИЙ И ОБРАБОТКА ДАННЫХ

Рис. 3. Карта типов берегов полуострова Челекен
Важнейшим результатом исследования, является выявление объектов инфраструктуры на полуострове Челекен, находящихся под угрозой затопления, что окажет отрицательное воздействие на инфраструктуру экономики и экологии не только п-ова Челекен, но и стран прилегающих к акватории всего Каспийского моря, повлияет на социальную сферу. Были выделены объекты, расположенные ниже горизонтали -25 метров абс. и составлена карта «Угрозы затопления объектов инфраструктуры полуострова Челекен» (см. рис. 4).

Особое опасение подъем уровня Каспийского моря представляет для автодорог, нефтепроводов и проходящих вдоль них линий электропередач. Уже сейчас затоплена значительная часть дороги Челекен – Небитдаг на юге полуострова. В недавние годы эта дорога была перенесена севернее. Однако на карте видно, что при повышении уровня моря затопится и часть новой дороги и нефтепровода. Нефтепристань Аладжа, являющаяся главным пунктом экспорта челекенской нефти с полуострова, окажется полностью под водой, а также затопит идущую к порту дорогу и нефтепровод. Нефтерангилие и близлежащий поселок Карагель будут полностью под водой, что может привести к катастрофическим последствиям и утечке значительной части нефтепродуктов в Каспийское море.

К югу от г. Челекен расположено большое нефтяное соленое озеро, содержащее значительные концентрации продуктов нефтепереработки, при подъеме уровня Каспия, вода из озера будет поступать в море и загрязнять его нефтью.

Уже сейчас на Челекене в районе «Лбуца» можно видеть затопленные скважины, из которых выбрасываются нефтяные продукты, еще часть скважин при дальнейшем подъему уровня моря окажутся под водой. Это грозит значительным загрязнением Каспия, особенно при затоплении заброшенных скважин. Часть нефтегазоносной области Восточный Челекен окажется под водой вместе с нефтяными скважинами.

Результат затопления населенного пункта на полуострове можно наблюдать уже сейчас – поселок Хелес на юге основной части полуострова был затоплен при подъеме уровня моря, начавшемся в 1978 году.

При повышении уровня Каспийского моря до отметки -25 метров существует ряд возможных последствий для полуострова Челекен:

- Возможно затопление закрытых нефтяных скважин, а в связи с вероятностью того, что скважины были плохо законсервированы, произойдет разлив нефти и её вынос в Каспийское море;
- Полуостров Челекен будет соединен с материком уже значительно меньшим перешейком, чем при современном уровне (-27,2 метра);
- Значительно сократятся длины Северной, и в особенности, Южной Челекенских кос;
- В связи с частичным затоплением участков старой дороги соединяющей населенные пункты Челекен и Небит-Даг, дорога была перенесена севернее, но при подъеме уровня Каспийского моря до -25 метров, затопятся как же участки и новой дороги Челекен-Небит-Даг;
• Город Туркменбаши (бывший Красноводск), железная дорога, а также магистральная автодорога на значительном своем протяжении будут затоплены;
• Многие портовые сооружения будут затоплены и разрушены;
• В связи с открытием курортной зоны "Аваза" на Красноводском п-ове, остро встал вопрос о строительстве сооружений зон отдыха (отелей и др.) в безопасной от затопления зоне, в настоящее время угроза затопления объектов строительства почти не учитывается.

Рис. 4. Карта «Угрозы затопления объектов инфраструктуры полуострова Челекен»

ЛИТЕРАТУРА

1. Кобец Н.В. Геоморфологические и геологические исследования п-ова Челекен и прилегающего мелководья Каспийского моря на основе аэрометодов// Труды лаборатории аэрометодов АН СССР, т. 10, М.—Л., 1960. -с. 47-73.
ИЗУЧЕНИЕ ДИНАМИКИ ЛЕСОТУНДРОВОЙ РАСТИТЕЛЬНОСТИ ПО КОСМИЧЕСКИМ СНИМКАМ (НА ПРИМЕРЕ КОЛЬСКОГО ПОЛУОСТРОВА)

А.Р. Лошкарева
Географический факультет
Московский Государственный университет имени М.В.Ломоносова
Москва, Россия
E-mail: alossenkareva@gmail.com

INVESTIGATION OF DYNAMICS OF FOREST-TUNDRA VEGETATION AT NORTHERN PART OF KOLA PENINSULA BY SPACE IMAGES

A.R.Loshkareva
Faculty of Geography
M.M.Lomonosov Moscow State University
Moscow, Russia
E-mail: alossenkareva@gmail.com

Abstract. In this investigation the technique of detecting long-term changes of vegetation of a forest-tundra zone (on an example of Kola Peninsula) on space images is developed and realized. This research shows possibility of using Landsat TM images with the spatial permission of 30 m for this goal. In summary we observe a northward shift of the forest-tundra transition zone, mainly thickening of shrub vegetation, for the period of warming during 1986-2005.

В данной работе разработана и реализована методика определения долговременных изменений растительности лесотундровой зоны выполнена на примере Кольского полуострова по космическим снимкам. В исследовании показана возможность использования для данной цели космических снимков Landsat TM с пространственным разрешением 30 м. Получены данные об увеличении смежности крон древесной растительности и продвижении более теплолюбивых видов к северу и вверх по склону в период с 1986 по 2005 гг. Результаты дистанционного исследования были подтверждены при полевом обследовании данного района.

Введение. Задачи исследования

В связи с проведением Международного Полярного Года в 2007 – 2008 гг., многие страны реализовали крупносштабные скоординированные исследования (которые продолжаются до сих пор), направленные на совместное изучение полярных областей и последующий обмен полученными данными. Как известно, глобальное повышение температуры воздуха наиболее заметно в полярных регионах. Именно в этих регионах уже происходит такие изменения, как сокращение площади морских льдов, ожидается реакция различных компонентов природной среды, в том числе растительности Арктики, Субарктики, изменение северной границы лесов.

Переходная лесотундровая зона является наиболее нестабильной в условиях изменяющегося климата. Изменения ее пространственной структуры и видового состава растительности в ней могут служить как индикаторами, так и доказательствами изменения климата. Поэтому, изучению пространственно-временной динамики сообществ лесотундры, в настоящее время уделяется исключительно большое внимание [Изменение климата, 2001].

Данная работа выполнена по государственному контракту №14.740.11.0200 в лаборатории аэрокосмических методов географического факультета МГУ и в рамках международного проекта PPS Arctic (http://ppsarctic.nina.no/), целью которого является изучение экотона «тайга-тундра».

Целью данной работы является изучение динамики лесотундровой растительности на севере Кольского полуострова по дистанционным данным. Исследование продолжает работу, начатую в 2009 г. [Кислов и др., 2008], и, при помощи совершенно другой методики проверяет правильность полученных ранее результатов. Кроме того, для верификации полученных по дистанционным методам результатов, привлекаются данные полевых исследований.
Характеристика района исследования

Район исследования расположен на севере Кольского полуострова (Мурманская область) к востоку от г. Мурманск вплоть до Серебрянского водохранилища (рис.1). Площадь территории исследования составляет около 4-х тыс. км². Этот участок представляет собой возвышенную равнину с многочисленными озерами в тектонических впадинах, амплитуды высот рельефа составляют 150–200 м.

На территории исследования представлены сразу три природных зоны: лесная, лесотундровая и тundra. Такой выбор района исследования был сделан неслучайно, т.к. предполагается исследование динамики растительности в различных природных зонах.

Леса, преимущественно березовые, занимают в основном юго-западную часть территории и произрастают по склонам сопок и увалов. Верхние части увалов и сопок заняты лишайниковой тундрой, а наиболее высокие вершины – каменистой тундрой. Переходную зону между лесами и лишайниковой тундрой занимает кустарничковая тundra, нередко с группами деревьев или отдельными деревьями. Днища долин и тектонических понижений заняты осоково-пушьцевыми болотами с зарослями ивы вдоль водотоков.

Климатические изменения в районе исследований

Главным фактором глобальных изменений в XX столетии и в настоящее время служит прогрессирующее потепление климата, которое продолжается уже свыше 100 лет. Первый максимум потепления был отмечен в 40-е годы прошлого столетия и составил 0,5°C. Затем, до середины 60-х годов наблюдалось некоторое снижение глобальной приземной температуры воздуха в пределах 0,2°C. В период 1861 – 2000 гг., похолодание сменялось дальнейшим повышением температуры в более ускоренном темпе, достигшим второго максимума в конце 90-х годов, составившим в среднем 0,75°C при общей амплитуде температурных изменений в 1,27°C в период [Касимов и др., 2006].

В целом, для территории России для приповерхностной температуры рост температуры с середины 80-х гг. характеризуется коэффициентом линейного тренда (0,074±0,018)°C/10 лет [Кислов и др., 2008]. Данные метеостанции Мурманска в целом отражают указанную картину, фиксируя потепление, начавшееся с 1985 г., и продолжающееся до настоящего времени. Интенсивность потепления здесь значительно возросла в последние три десятилетия [Анциферова и др., 2010].

Методика и результаты исследования динамики лесотундровой растительности

Работа в области исследования динамики растительности севера Кольского полуострова ведется авторами уже в течение 3-х лет. За этот времена был разработан и реализован целый ряд различных методик определения изменений растительности по дистанционным данным. Первой попыткой исследования стала попытка сравнения аэроснимков 1962 г. для отдельных небольших по площади территорий и космического снимка Terra ASTER. В результате было зафиксировано продвижение древесной растительности к северу и вверх по склону. Наибольшие изменения растительности были отмечены на границе природных зон тундра-лесотундра [Крацова, Лошкарева, 2010]. Однако, такой вариант исследования динамики сильно ограничен, ввиду отсутствия данных аэросъемки на весь север Кольского полуострова, а также по причине большой трудоемкости обработки таких крупномасштабных данных. Поэтому, мы пришли к выводу о необходимости использования таких дистанционных данных, которые покрывали бы значительную площадь, позволяя проводить при этом корректное изучение динамики растительности. В качестве таких материалов были...
выбраны космические снимки Landsat TM, с пространственным разрешением 30 м и пространственным охватом 185 х 185 км. Эти снимки стали получать еще с 1986 г., таким образом, доступны сопоставимые разновременные данные. Однако, возможность их использования для указанных исследований еще предстояло оценить.

По итогам проведенных исследований, данным полевых обследований территории, привлечении снимков сверхвысокого пространственного разрешения было отмечено, что интересующая нас природная граница тундра-лесотундра не может быть определена по снимкам Landsat TM без привлечения дополнительных источников, и, следовательно, не может быть изучена и ее динамика просто посредством последовательного дешифрирования пары разновременных снимков. Причина сложности проведения данной природной границы заключается в том, что спектральная смесь двух объектов – крон и их теней (элементов, собственно и слагающих лесотундру), оказывается идентична спектральной характеристике кустарничковой растительности (элемента уже тундровой растительности) [Кравцова, Лошкарева, 2010]. Поэтому нами была предложена и разработана новая методика, основанная на широко известной идее использования индекса NDVI, дополненная и доработанная под конкретные особенности территории исследования.
В данной работе предложена и реализована методика определения многолетних изменений растительности севера Кольского полуострова по дистанционным данным (рис.2). В работе использованы два разновременных космических снимка Landsat TM (1986 и 2005 гг.), с пространственным разрешением 30 м. Период времени для анализа изменений растительности был выбран исходя из особенностей климатического тренда, характерного для России.

Для выполнения анализа были выбраны снимки Landsat TM, сделанные в период активной вегетации растительности района изучения и за близкие даты (5 и 9 июля 1986 и 2005 гг. соответственно).

Изменения растительного покрова были определены при использовании NDVI – нормализованного относительного индекса растительности - простого количественного показателя, коррелирующего с запасами растительной биомассы (обычно называемого вегетационным индексом). Рассчитывается по формуле NDVI=(B\text{nd}-B_\text{r})/(B\text{nd}+B_\text{r}), где B\text{nd} и B_\text{r} – коэффициенты спектральной яркости соответственно в ближней инфракрасной и красной зонах спектра.

Особенностью применения NDVI является сведение информации о многозонального изображения к единому параметру. В вегетационном индексе представлены те параметры, которые отражают именно различия в растительном покрове и минимизируется влияние таких побочных факторов, как освещенность, влияние атмосферы и др.

Перед расчетом индексных изображений исходных космических снимков была выполнена их предварительная радиометрическая калибровка, необходимая для приведения значений яркостей снимка к единому параметру. Выполнение данной методики при отсутствии такой радиометрической калибровки невозможно, так как происходящие изменения растительности невелики, и полностью скрываются за счет износа сенсоров.

Также снимки были взаимно привязаны, созданы «маски» снега, водных объектов и облаков, мешающих анализу растительного покрова территории. Такая предварительная обработка космических снимков позволила в дальнейшем провести полностью корректное их сравнение, разделить территории с изменявшимися и неизменявшейся растительностью за указанный период времени.

Для каждого из разновременных снимков были рассчитаны значения индексов NDVI (рис.3), и из индексного изображения 2005 г. было вычтено изображение 1986 г. После этого преобразования было получено изображение разности NDVI, характеризующее происходящие изменения растительного покрова в обоих направлениях – ухудшения состояния и улучшения. Поскольку полученное изображение является непрерывным растовым изображением, в каждом пикселе которого содержится значения разности NDVI двух исходных снимков, то для его интерпретации подбор пороговых значений, которые позволили бы выделить действительные изменения.

После проведения радиометрической коррекции, значения яркостей снимков отличаются только лишь за счет действительных изменений объектов на земной поверхности, с погрешностью 5% (погрешность, заявленная авторами алгоритма радиометрической коррекции) [Chander G., Markham B., Helder D.L., 2010]. Другой вид погрешностей – погрешность, накопленная в результате проведенных операций над изображениями, была рассчитана, и составила 5%, а для итогового изображения разностей NDVI погрешность составляет 10%. Т.е. в полученном диапазоне значений от -1 до 1, погрешность попадает на интервал значений от -0,1 до 0,1. Пиксельы с данными значениями отнесены к неизменявшимся, остальные – изменявшимся.

Разделение изображения на 3 класса (без изменений, с увеличением и уменьшением значений NDVI) показало, что в целом изменение значения NDVI для территории суши (без озер и крупных водотоков) за этот период было положительным (для 10,4% территории – NDVI увеличился, для 4,4% территории – уменьшился, для 85,2% территории - не изменился) (рис.4.).
Однако, часть из полученных изменений растительности нельзя отнести к природным – это такие антропогенные изменения как, строительство дорог, линий электропередач, образование карьеров и отвалов, расширение городов, рубка леса, появление растительности на бывших объектах хозяйственного использования человеком, ныне заброшенных (рис. 5). Такие территории были исключены из дальнейшего анализа изменений растительности. Антропогенные изменения отделялись от естественных на основе следующих признаков: формы контура, однородности произошедших в его пределах изменений, расположения вблизи крупных антропогенных объектов (дороги, ЛЭП, населенные пункты, водохранилище). Кроме того, были исключены территории вокруг снежников, не оттаивших в несколько более холодный 1986 г.

Рис. 4. Изменение индекса NDVI за период с 1986 по 2005 г.
а – изменение в сторону уменьшения значения
б – изменение в сторону увеличения значения

Рис. 5. Пример антропогенно измененной территории (расширение границ карьера), и его детектирование при помощи NDVI
а – фрагмент снимка Landsat TM 1986 г.
в - фрагмент снимка Landsat TM 2005 г. с показанными на нем произошедшими изменениями
Исключение антропогенно нарушенных территорий, а также участков, где растительность находится в разной стадии вегетации вследствие различия заснеженности в годы съемки, позволило получить картину тех изменений, которые можно считать обусловленными изменившимися климатическими факторами в данном районе (к этой группе объектов относится около 40% от изначальной территории, определенной как изменяющуюся) (рис.6).

Изменения растительности, зафиксированные охарактеризованным методом, расположены в основном на границе тundra и лесотундры, они включают в себя как продвижение лесотундровой растительности вверх по склонам, так и изменения границы природных зон тundra-лесотундра на равнинной территории. Кроме того, во внутренних участках тундровой зоны происходит смена лишайниковой и кустарничково-лишайниковой тундры лишайниково-кустарничковой и кустарничковой тундрой. Изменения представлены не повсеместно, а лишь на отдельных участках более южных экпозиций.

При проведении полевого обследования территории в июне 2011 г. на одном из участков, для которого дистанционными методами была обнаружена положительная динамика растительности, было определено значительное участие подроста в растительном сообществе, представленного в основном березой пушистой (Betula pubescens). Высота подроста березы составляет около 1 – 1,5 м, что для данной
Abstract. Complex technology of geoinformation mapping of relief types are developed on a basis of morphometric parameters (for example, region of the Chui basin). This technology allow to pass on mapping of landforms and their elements to the types of terrain mapping, which are natural combination of geomorphological objects.
Введение
Современный этап геоморфологических исследований характеризуется активным использованием ГИС-технологий для картографирования форм и типов рельефа. Однако степень внедрения геоинформационных методов в геоморфологическое картографирование существенно различается у представителей разных научных и образовательных организаций и до сих пор нет стандартных методик, позволяющих тиражировать их для решения производственных задач (в частности при геологическом и ландшафтном картографировании). В работе показана возможность использования методов управляемых классификаций, обычно применяемых для распознавания объектов на мультиспектральных космических снимках, для выделения различных типов рельефа.

Объекты и методы исследования

Для Чуйской степи выделяется широкий набор генетических типов четвертичного рельефа [Зольников, Дев, Лямина, 2010]. Борта котловины покрывают делювиально-проливолиевые шлейфы, а днище сложено озерными отложениями. У подножия Куйского хребта расположена слабонаклонная предгорная равнина, в нижней части которой встречаются сельвые гряды. Предгорная равнина рассечена во многих местах промоинами, оврагами и долинами мелких рек. В предгорную равнину врезается долина реки Чуя, которая проходит с юго-востока на северо-запад. Южнее андийского рельефа расположена обширная равнина с озерным типом рельефа, который имеет территориальную специфику в разных участках. На юго-восточной окраине котловины распространены ассиметричные гряды с более пологим западным склоном. Они представляют собой озерные барьи. Западнее на обширной территории между долинами рек Елангаш и Кокозек распространён выровненный озерный рельеф на альпийском основании, рассекаемый руслами левых притоков р. Чуя. К юго-западу увеличивается высота и угол наклона равнины, там расположены озерные отложения на моренном цоколе. Между реками Елангаш и Чаган - холмисто-грядовый гляциальный рельеф.

Основой работы послужила цифровая модель рельефа (ЦМР) по SRTM с разрешением 90 Х 60 метров, приведенная к размеру 90 Х 90. Максимальные ошибки этой модели: в плане – 8,8 м, по высоте – 6,2 м [http://gis-lab.info/qa/srtm.html]. Ошибка возрастает для местностей с расчлененным рельефом и уменьшается для равнинных участков. Также величина ошибки зависит от крутизны поверхности.

По ЦМР были построены абсолютные морфометрические параметры – углы наклонов и азимуты падения склонов. Абсолютные значения высот увеличиваются от центральной низменной части котловины, по которой протекает Чуя, к ее бортикам. По значениям углов рельеф распадается на два типа: плоский и расчлененный. По азимутам падения склонов четко выделяется западный борт, с преобладанием восточного и северо-восточного направлений; по линии ширинной разлома происходит изменение северо-восточное и северное направление; далее начинают преобладать север – западные и западные направления, эта часть котловины распадается на мозаику плоских площадок и площадок северо-западного, западного и частично восточного направления, и к югу доля западных и плоских площадок становится меньше [Зольников и др., 2010]; северный борт имеет южную и юго-западную ориентацию. Север западная часть долины реки Чуя представляет собой плоский участок со значением аспекто -1. Абсолютные показатели напрямую непригодны для сравнения эрозионных и аккумулятивных генетических типов четвертичного рельефа, поскольку абсолютные отметки, углы и экспозиции склонов прежде всего обусловлены неотектоникой. Поэтому однотипный характер, расположенный на разновысотных поверхностях с разными уклонами и экспозициями – различается по абсолютным морфометрическим характеристикам.

Таким образом, Чуйская степь уникальна и представляет собой модель знаний о генетике и генезисе морфометрических характеристик рельефа. Она может служить основой для изучения геоморфологических процессов в регионах с аналогичным рельефом. Но перспективы исследования в этой области еще только начинают открываться.
ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ ЗЕМЛИ: ТЕХНОЛОГИИ ИССЛЕДОВАНИЙ И ОБРАБОТКА ДАННЫХ

комплексами. Проводилась предварительная классификация в одномерном пространстве для того чтобы затем в результате многопараметрического анализа получить понятную карту типов рельефа, поддающуюся генетической интерпретации.

Выбранные морфометрические показатели были нормированы на максимумы и конвертированы в формат TIF. Затем изображения были подгружены в виде каналов в программный пакет ENVI и на основе обучения по эталонным полигонам была проведена управляемая классификация методами максимального правдоподобия и расстояния Махаланобиса. В работе было использовано несколько масок. Для снижения влияния горного обрамления использовалось маска, исключающая контрастный рельеф, сложенный палеозойскими коренными породами. Для управляемых классификаций использовались разные маски для плоского рельефа и для расчлененного.

Результаты работы и их обсуждения

Количественные характеристики рельефа связаны с его происхождением и историей развития, т.к.

земная поверхность хранит в своем геометрическом облике следы условий и особенностей этапов ее развития. В работе решались две задачи: охарактеризовать земную поверхность с помощью морфометрических показателей и по ним выделить различные генетические типы рельефа. Ряд параметров отражен в таблице.

| Таблица 1. Значения некоторых морфометрических параметров для разных морфогенетических комплексов земной поверхности |
|-----------------|-------|-----|-----|-----|
| | dS | dH | L | dAS | dAE |
| **Равнинный рельеф** |
L1	0-1,5	10-20	0-0,3	0,3-0,5	0,5-0,73
L2	0-1,5	20-30	0-0,3	0,3-0,5	0-0,4
L3	1-4	15-20	0-0,3	0,5-1	0,73-1
L4	1,5-4	15-20	0-0,3	0,9-1	0,98-1
A1	0-1	0-10	1,3-7,7	0,9-1	0,98-1
A2	1,5-4	20-30	1,3-1,8	0,3-76	0,73-0,98
Расчлененный рельеф					
D-P	1,5-4	30-80	0-0,3	0-1	0-1
G	4-38	30-130	0-0,8	0,5-0,9	0,5-0,98
S	1,5-8	30-130	0,3-1,3	0,3-0,5	0,5-0,73

Условные обозначения. Генетические типы рельефа: L1 - озерная равнина на алевропесчаном основании; L2 - озерная равнина на моренном основании; L3 - озерная равнина с барами (асимметричными грядами); L4 - озерная равнина, преобразованная термокарстом; A1 - аллювиальный рельеф Чуйской долины; A2 - аллювиальный рельеф притоков второго порядка; D-P - делювиально-пролювиальные шлейфы; ложбинно-грядовый рельеф: G - гляциальный; S - селевой. Морфометрические показатели: dS - диапазон углов; dH - вертикальная расчлененность; L - густота эрозионного расчленения; dAS - диапазон меридиональной проекции аспектов (южность); dAE - диапазон широтной проекции аспектов (восточность).

Значения вертикальной расчлененности меняются от 0 до 130 м. По этому показателю выделяется 5 интервалов значений. По вертикальной расчлененности хорошо отделяется раввинная часть котловины от ее бортов. При этом наклонные раввинные поверхности (наклонная равнина и делювиально-пролювиальные шлейфы) лежат в диапазоне высот от 30 до 80 м и отличаются однородностью от расчлененных типов рельефа, для которого характерен более широкий диапазон – от 30 до 130. Хорошо выделяется долина реки Чуи, с минимальным перепадом высот от 0 до 10. Для озерной равнины наблюдается увеличение этого показателя с 10-20 м до 30 м для озерной равнины на моренном цоколе. Рядом с Чуей мозаичной ассоциацией выделяется термокарстовый тип рельефа.

По значению разницы углов Чуйская котловина разделяется на плоский и расчлененный типы рельефа. Значения этого параметра распадаются на 6 классов. Для расчлененного рельефа характерно сочетание поверхностей с разницей углов от 4-8 до 13-38 м. Для раввинной части характерен диапазон углов от 0 до 4 градусов, для расчлененного – от 8 до 38. Минимальная разница углов (0-1) характерна для аллювиального типа рельефа р.Чуи с увеличением до 1-1,5 на юга-западе. Для озерной равнины характерна разница углов 1-1,5. По ней со значениями 1,5-4 прорезаются левые притоки Чуи и выделяется термокарстовый рельеф. По разнице углов наклонная озерная равнина в северной части котловины отличается от делювиально-пролювиальных шлейфов (1,5-4 и 4-8 соответственно) и сходна с озерным участком, осложненным барами в юго-восточной части (1,5-4).
Анализ плотности линеаментов показал, что в целом для Чуйской степи характерна плотность 0-0,3.
По наибольшему значению этого показателя выделяется непосредственно долина реки Чуя (1,8-7,7), а так же северный (наиболее кругой, а следовательно и наиболее расчлененный) борт котловины.

Относительный субмеридиональный аспект отражает диапазон азимутальных значений южного и северного направлений. Этот показатель изменяется от 0 до 1; чем ближе к единице, тем больше разница направлений в пределах скользящего окна. Минимальными значениями этого показателя (0-0,3) характеризуется озерный рельеф. Максимальным значением выделяется аллювиальный рельеф реки Чуя и термокарстовый (0,9 – 1). Значениями от 0,3 до 0,76 среди озерного рельефа выделяются притоки Чуи и озерный с барами (0,5-1). Так же максимальными значениями характеризуется гляциальный ложбинно-грядовый рельеф (0,5 — 0,9) и делювиально - пролювиальные шлейфы (0-1). Для селевого рельефа наблюдаются значения 0,3-0,5.

Относительный субширотный аспект показывает диапазон азимутальных значений западного и восточного направлений, изменяется в пределах от 0 до 1 – чем ближе к единице, тем больше разница направлений в пределах скользящего окна. По этому показателю различаются между собой озерные типы рельефа: озерный на аллювиальном основании – 0,5 -0,73, озерный на моренном основании – 0-0,4, озерный с барами – 0,73-1. Максимальное значение этого параметра характерно для аллювиального рельефа р. Чуя и термокарстового (0,98-1). Для расчлененных типов рельефа выделяются большие диапазоны значений с максимальным для делювиально-пролювиальных шлейфов (0-1).

Таким образом, на основе предварительного анализа морфометрических показателей удалось построить последовательность классификации морфогенетических комплексов по разным признакам.

![Схема классификации генетических типов рельефа](image)

Рис.1. Схема классификации генетических типов рельефа

В рамках рассмотренной на рисунке 1 технологической последовательности сначала вся территория была разделена на равнинный и расчлененный рельеф по параметрам dS и dH. Затем, были созданы маски на каждый из этих классов рельефа, внутри которых проводилась дальнейшая классификация. Расчлененный делится на гляциальный, делювиально-пролювиальный и селевый, а равнинный на аллювиальный и озерный. В свою очередь аллювиальный и озерный по отдельным маскам делились на более дробные генетические подтипы. При этом для каждой классификации использовался уже свой набор морфометрических параметров. Таким образом, применялась не общая классификация с обучением по эталонным участкам, а ветвящаяся серия классификаций по разным наборам показателей с последовательным построением масок на основе предложенной схемы. Например, на рисунке 2 представлено разбиение рельефа на расчлененный (серый цвет) и равнинный, который свою очередь разделен на аллювиальный (черный) и озерный (белый).
Проведенная работа показала целесообразность комплексирования методов обработки растровых изображений и сеточного моделирования для картографирования морфогенетических типов земной поверхности. Использование относительных, а не абсолютных морфометрических параметров позволило установить сходство аккумулятивно-эрозионного рельефа близкого происхождения для участков земной поверхности, расположенных на разновысотных неотектонических блоках различной экспозиции и наклона. Апробированная технология перспективна для построения геоморфологических карт при среднемасштабном ландшафтном и геологическом картографировании.

Литература

3. Описание и получение данных SRTM http://gis-lab.info/qa/srtm.html
FIELD GOEBOTANICAL RESEARCHES AS THE FIRST STAGE OF WORK ON A NEW GEOBOTANICAL MAP OF THE KOLA PENINSULA

N.E. Koroleva, A.R. Loshkareva

1Polar-Alpine Botanical Garden-Institute (PABGI)
Kirovsk, Murmansk region
22M.V.Lomonosov Moscow State University
Moscow
Russia

E-mail: flora01@rambler.ru, aloskhareva@gmail.com

Abstract. The existing Map of Vegetation of Murmansk Province has been created more than 50 years ago, and now it is to be revised by means of GIS-Technologies. The forest-tundra area in the middle way of the Teriberka River has been chosen as one of key sites for new map. The field work in June, 2011, resulted in 132 vegetation description, biotopes (habitats) classification and comparison of landscape-vegetation contours with the contours of space images. The results of vegetation description and biotope typology will be used for the characteristic of reference objects, at interpretation of images and the subsequent creation of the legend and typological vegetation map of the area.

Введение

Картографирование растительного покрова Мурманской области имеет большое значение, как для изучения современного состояния растительного покрова, так и для решения широкого круга практических задач, в частности, для оценки биоразнообразия и ресурсного потенциала области как части Европейского региона. Хотя исследования флоры и растительности Кольского полуострова ведутся с конца XIII века, геоботанически его территория изучена все еще неравномерно. Наряду с довольно полно обследованными районами существуют настоящие «белые пятна» [Разнообразие растений..., 2009], а полного геоботанического обследования и картографирования Кольского полуострова в крупном масштабе не проводились никогда. Первой крупномасштабной картой-схемой растительности для Мурманской области можно считать описание и карту Хибин [Аврорин, Качурин, Корохин, 1936]. Е.Г. Чернов [Чернов, 1953] с 1935 г. проводил геоботаническое изучение Кольского полуострова, результатом которого стала Карта растительности Кольского полуострова в масштабе 1:1 000 000. Впоследствии картографирование полуострова производится регулярно, карты Кольского полуострова в составе карт СССР и Европейской части СССР создаются в атласах (масштабы 1:15 000 000 – 1:17 000 000) и в виде мелкомасштабных настенных карт (1:2 500 000 – 1:4 000 000). Отдельно следует выделить карту растительности Кольского полуострова в масштабе 1:2 000 000, изданную в Атласе Мурманской области [Атлас Мурманской области, 1971], а также карты растительности, созданные в недавнем прошлом на основе обработки и дешифрирования космических снимков на территории всей России [Барталеv и др.,2000; Уваров , 2010; CAVM Team, 2003]. Все геоботанические карты на тундровую и лесотундровую часть Кольского полуострова являются мелкомасштабными. Для решения теоретических и практических вопросов назрела необходимость выполнить средне- и крупномасштабное картографирование растительности данного региона.

Характеристика района исследований

Выбранный ключевой участок расположен в северо-западной части Кольского полуострова к западу от Мурманска в районе оз. Каненттявр (рис.1). Его площадь составляет около 1300 км2. Рельеf – холмисто-грядовый, с превышением высот до 150 м, образован чередованием ступенчатых тектонических морфоструктур с выпуклыми вершинами, моренных холмов и гряд, заболоченных понижений и долин рек. Почвообразующими породами являются щебнистая морена, элювиий кристаллических коренных пород, кроме того, в древней долине р. Териберки развиты мощные песчаные

1 Данная работа выполнена по государственному контракту №14.740.11.0200

131
флювио-гляциальные отложения, а в бесточностных ложбинах и заболоченных долинах – мощные торфяные
отложения, здесь на болотах присутствует сезонная мерзлота до конца июня – середины июля ниже 25-30 см
от поверхности. Гидрографическая сеть представлена относительно крупными реками, ручьями и
многочисленными озерами. Долины ручьев и берега озер сильно заболочены, крупные реки имеют
небольшие участки развитой поймы. Озера занимают в основном котловины тектонического
происхождения, самые крупные из них – оз. Канентьяр и оз. Пуарентьяр. Весь ключевой участок
расположен в подзоне лесотундры (или березовых криволесьев и редколесий) зоны тайги, на
возвышенностях выражена высотная поясность (пояс березовых криволесьев и горно-тундровый пояс).

Методика и результаты исследования

Современная геоботаническая карта – это сложное произведение, интегрирующее все свойства
растительности и отражающее ее флористический состав, фитоценотический статус, динамическое
состояние, экологические и географические связи. Ее создание возможно лишь совместными усилиями
специалистов картографов и геоботаников. Эта работа начинается с методической разработки совместных
полевых исследований, поскольку, при существующем уровне научной специализации картограф не в
состоянии составить полное, качественное геоботаническое описание, а также полностью правильную с
геоботанической точки зрения, всеобъемлющую легенду к карте, а геоботаник, в свою очередь, испытывает
затруднения при анализе космических снимков, не может верно оценить возможность отображения того или
иного контура растительности на карте. Экспедиционное сотрудничество специалистов-геоботаников и
студентов-картографов в рамках учебной практики позволяет получить новые навыки в области
картографии и геоботаники соответственно, а также хороший, качественный полевой материал для
подготовки будущей карты, благодаря изучению данного района, как с геоботанической стороны, так и со
стороны анализа космических данных с использованием современных GIS-технологий.

Перед проведением полевой части практики была выполнена обширная камеральная подготовка,
включавшая в себя:

1. Поиск, подбор и печать хороших, безоблачных снимков на территорию исследования. В
качестве таких снимков были выбраны Снимки Landsat TM, обеспечивающие хороший
овхват территории (185x185 км), и при этом, обладающие достаточным пространственным
разрешением для проведения картографирования растительности (30 м). При подборе
разновременных снимков мы предъявляли следующие требования к ним: во-первых,
отсутствие облачного покрова на исследуемой территории, во-вторых, выполнение съемки
в период активной вегетации растительности на данной территории (июнь-август).
2. Изучение литературных данных о растительности данного района, выбор типологического
подхода для предварительного варианта легенды будущей карты.
3. Разработка предварительных вариантов полевых маршрутов.
4. Создание предварительных схем дешифрирования снимков района исследования.

Рис. 1. Район исследования
а – расположение на карте
б – фрагмент снимка Landsat TM на территорию исследования
с отмеченными точками полевых описаний

Во время проведения полевого обследования территории нами составлялись геоботанические
описания точек для последующего использования в качестве эталонов для классификации снимков;
одновременно выполнялась проверка на местности достоверности выполненных ранее схем
дешифрирования для внесения в них поправок. При дешифрировании характерных контуров на
космических снимках, необходимых для создания эталонных участков, точки описаний выбирали примерно в центре выделенного контура, для того, чтобы наиболее точно охарактеризовать его.

Всего было выполнено 132 полных геоботанических описания. Геоботаническое описание проводили по стандартной методике. Пробные площадки закладывали в гомогенных на глаз выделах, занятых одним растительным сообществом, их размер в горных тундрах и в кустарниковых сообществах (ивняках, ериках) составлял 2х2 м, в березовых криволесьях 10х10 м. На болотах отдельно выполняли описания элементов комплекса (буров, ложбина, мочажин), размер пробной площади для элементов комплекса совпадал с размером сообщества. Участие видов оценивали по 7-балльной шкале оценки покрытия-обилия Браун-Бланке, где «е» – редко; + – покрытие менее 1%, 1 – покрытие менее 5%, 2 – покрытие 5–25%, 3 – покрытие 25–50%, 4 – 50–75%, 5 – 75–100%. Покрытие всех критогенных видов оценивали в поле, определение мхов и лишайников осуществляли в лаборатории. Гербарные и картографические материалы, геоботанические описания хранятся у авторов статьи и в гербарии Полярно-альпийского ботанического сада-института (KPABG). Массив описаний впоследствии подготовили для обработки с помощью программы кластеризации (пакет GRAPHS) [5] и для эколого-флористической классификации растительности.

Уже при полевом исследовании ключевого участка растительные сообщества были отнесены к ранее выделенным нами типам биотопов [Королева, 2008; Королева (в печати)].

Лесотундровые сообщества относятся к следующим типам биотопов: 1. Березовые криволесья воронично-кладочиновые на склонах и вершинах моренных холмов, на повышенных элементах рельефа холмисто-гладовой структурно-денудационной равнины; 2. Березовые криволесья воронично-зеленомошные на склонах лесотундровых возвышенностей, в более оснеженных и менее экспонированных к ветру элементах ландшафта, чем воронично-кладочиновые березовые криволесья; 3. Березовые криволесья деревно-черничные зеленомошные в местах более позднего схода снега, в нижних участках и в перегибах горных склонов, в озерных и речных долинах и в неглубоких складках холмистой приподнятой равнины. 4. Березовые редколесья пойменные травяно-кустарничковые зеленомошные с можжевельником на ровных, хорошо дренированных, приподнятых участках поймы Териберки; 5. Березовые криволесья и редколесья злаково-высокостворные в пойме р. Териберки. Тундровые сообщества относятся к типам биотопов: 1. Кустарничково-лишайниковое сообщество (воронично-кладочиновые) на округлых и плоскообращенных вершинах моренных холмов, на выходах и останках коренных пород на автоморфных хорошо дренированных почвах, сформированных, преимущественно на основной морене, со значительным содержанием валунного материала, либо на элювиях кремнекислотных пород.
пород; 2. Кустарниковые и кустарниковые сообщества (ерниково-мохово-лишайниковые, деренно-черничные) на склонах моренных гряд и холмов, умеренно заснеженных зимой, на хорошо дренированных автоморфных почвах, умеренно увлажненных летом; 3. Присеневые мелкотравно-ивково-моховые сообщества и группировки в ложбинах, местах снежных заносов на коренных обнажениях между моренными холмами и грядами, заснеженных зимой и долго не освобождающихся от снега летом. Широко распространены типы биотопов болот: 1. Мелкобугристые морошково-кустарниковчковые болота в сочетании с озерками и обширными, в разной степени обводненными осоково-сфагновыми мочажинами и 2. Бугристые морошково-осоково-кустарниковчковые аапа-болота. Вдоль ручьев и малых рек обычны тип Разнотравные приручьевые и приручные луга и кустарники (ивняки и ерники). На основании данных полевых исследований была составлена легенда для геоботанической карты, с тем, чтобы любое растительное сообщество (описание) на местности можно было отнести к одному из классов данной легенды.

На настоящий момент по материалам полевых исследований, с использованием аэрофотоснимка 1962 г. и космического снимка Landsat TM 2005 г. создан фрагмент будущей карты в более крупном масштабе (рис.2).

Целью дальнейших совместных исследований является создание геоботанической карты в масштабе 1:100 000 на весь север Кольского полуострова.

ЛИТЕРАТУРА

1. Аврорин Н.А., Качурин М.Х., Коровкин А.А. Материалы по растительности Хибинских гор // Труды СОПС АН СССР, сер. Кольская. – М.-Л. 1936. – Вып.2. – 93 с.
3. Королева Н.Е. Основные биотопы горных и зональных тундр Мурманской области// Вестник МГТУ, том 11, №3, 2008 г. – С. 533 – 543.
9. Чернов Е. Г. Карта растительности Кольского полуострова в масштабе 1:1 000 000 с пояснительным текстом: Дис. на соиск. уч. ст. канд. биол. наук. – Кировск, 1953. – 274 с.
METHODIC OF MAPPING AND MONITORING OF HETEROGENEOUS PRIRODNO-TERITORIAL COMPLEXES

* Institute of geology and mineralogy of the Siberian Branch of the Russian Academy of Science
E-mail: balandis@igm.nsc.ru, zol@igm.nsc.ru; hope@igm.nsc.ru
** Institute of soil science and agrochemistry of the Siberian Branch of the Russian Academy of Science
E-mail: smolentseva@issa.nsc.ru
*** The central Siberian botanical garden of the Siberian Branch of the Russian Academy of Science
E-mail: akoroluk@csbg.nsc.ru
Novosibirsk, Russia.

Abstract. The methodic of mapping and monitoring of heterogeneous natural-territorial complexes on the base of space images of high and medium resolution (Quickbird, Landsat, SPOT) is described. An examples of approbation of this methodic is shown.

При проведении исследований природных систем какой-либо территории мы сталкиваемся с пространственной неоднородностью ландшафтов. В последние несколько десятилетий при изучении природно-территориальных комплексов (ПТК) широко используются данные дистанционного зондирования (ДЗЗ). С появлением большого числа мультиспектральных снимков различного разрешения исследователи перешли от визуального дешифрирования к классификациям и пространственному анализу ландшафтных обстановок. Однако сложно организованные ПТК формируют на цифровых изображениях смесь спектральных откликов различной яркости, что не позволяет в рамках автоматической обработки ДЗЗ решать задачу стандартными методиками разграничения анализируемой площади. Предлагаемая нами технология позволяет не только картографировать, но и оценивать вклад различных типов растительности (в зависимости от их процентного соотношения) в спектральные характеристики снимков. Кроме того, с использованием разработанной технологии возможно проводить моделирование изменений пространственной структуры растительного покрова. Технологическая схема разработанной методики приведена на рисунке 1.

Первым этапом разработанной комплексной технологии было создание системы многопараметрического комплексного описания ландшафта для проведения наземных исследований и сбора данных с учётом свойств элементарных ПТК [Золников и др., 2010]. В результате междисциплинарных исследований был подобран и утверждён набор индивидуально-индикационных, количественных и полуколичественных признаков, характеризующих типовые ландшафтные обстановки, иерархически отвечающие уровню среднемасштабных карт и схем (1:100 000 – 1:300 000), а также снимкам с пространственным разрешением от 10–60 м. Эта унификация проводилась в виде многоинтерационных последовательных приближений на протяжении нескольких полевых и камеральных сезонов на разных полигонах юга Западной Сибири.

Стандарты многопараметрического комплексного описания базовых составляющих ПТК (геолого-геоморфологического строения, почв и растительности) разрабатывались совместно сотрудниками лаборатории геоинформационных технологий и дистанционного зондирования ИГМ СО РАН, ЦСБС СО РАН, ИПА СО РАН [Золников и др., 2010]. Непосредственно в поле по этим стандартам были сделаны конкретные тематические описания по точкам и полигонам, а в камеральный период - созданы базы геоданных. Эталонные участки для комплексного описания в поле выбирались с учетом пространственного разрешения ДЗЗ. Отдельные компоненты ПТК (растительность, почва, геологический субстрат, рельеф)

1 Работа выполнена при финансовой поддержке проекта № 14/16 программы президиума РАН
характеризовалась в поле по стандартным методикам. В камеральный период проводилась дальнейшая обработка всех комплексных полевых описаний. На основе скорректированных описаний была получена база геоданных, которая в дальнейшем анализировалась средствами программного пакета ArcGIS.
Созданные в результате полевых описаний базы геоданных дополняются спектральными библиотеками, полученными в результате изучения спектрального отклика ПТК на космоснимках выбранного пространственного разрешения [Зольников и др., 2010, и др., 2010]. Спектральные библиотеки составляются по комплексно описанным в поле контурам. Как правило, исследования на ключевых полигонах ведутся на протяжении нескольких лет, что дает возможность неоднократно верифицировать как базы геоданных, так и спектральные библиотеки, составляемые по контурам.

Рис. 1. Технологическая схема

На следующем этапе оценивается степень внутренней однородности ПТК по всем каналам снимка. В случае гомогенности, ПТК должны обладать унимодальным распределением яркостных характеристик во всех диапазонах спектра. Если в каком-нибудь канале обнаруживается полимодальное распределение значений, то очевидно, что в спектральном домене обособляется более чем один объект и такой выдел вряд ли можно считать элементарным. Также, анализируются и выбираются визуальные изображения, связанные с попаданием в эталонные пиксели сопредельных участков, занятых другими ландшафтами, а также с узко локальными феноменами. Особое внимание уделяется пространственному распределению пикселей в предварительных результатах классификаций. Следующим этапом является управляемая классификация с обучением по эталонным выборкам. Обработка изображений может проводиться пошагово с использованием масок в несколько итераций.

Выделение гетерогенных ПТК происходит с использованием плотностных сеток. Применение плотностных сеток позволяет: 1) исключить чрезмерно мелкие объекты и выделить наиболее значимые области и структуры; 2) сравнивать снимки разного пространственного разрешения (Landsat, SPOT); 3) выделять гетерогенные ПТК с различным процентным соотношением компонентов. Для выделения гетерогенных ПТК, для каждого класса, полученного при управляемой классификации строятся плотностные схемы. Шаг сетки в каждом конкретном случае определяется пространственным разрешением обрабатываемого космического снимка, а радиус скользящего окна подбирается эмпирически в соответствии с функциональным масштабом ландшафтной карты. На следующем этапе каждому пикселю...
присваиваются значения полученных плотностей, нормированные на сумму значений плотностей в каждом пикселе. Таким образом, каждый пиксель получает характеристику в виде процентного соотношения плотностей ПТК. После этого выделяются типы сочетаний ПТК.

Рассмотрим реализацию полученной технологии на примере эталонного полигона «Касмалинский бор», который представляет сложный комплекс сосновых лесов и травяных ландшафтов юго-западной части Алтайского края [3]. Ленточные боры степной зоны юга Обь-Иртышского междуречья занимают древние ложбины стока, формируя серию вытянутых в северо-восточном направлении лент, характеризующихся оригинальной флорой и имеют сложную пространственную структуру почвенно-растительного покрова, что делает их привлекательными для анализа пространственной неоднородности на разных иерархических уровнях [4]. На данной территории распространены: солончки, болота, кустарники, сухие степи, солонцеватые степи, солончаковые луга, сосновые леса, осиново-березовые леса, березовые заболоченные леса. Результаты классификации безлесных территорий по снимку Quick Bird показывают значительную гетерогенность их пространственного распределения.

Далее для каждого выделенного ПТК строились плотностные схемы. Для участка, показанного на рисунке 2 плотностные сетки строились с шагом 2,5 м и радиусом окна 25 м.

Рис. 2. Плотностная схема ПТК, отражающая процентное содержание в гетерогенных ландшафтах осоково-злаковых солончаковых лугов. 1 – заболоченные леса; 2 – сосновые леса; процентное содержание лугов: 3 – 0-5%; 4 – 5-15%; 5 – 15-30%; 6 – 30-70%; 7 – 70-100%

На полигоне «Касмалинский бор» наиболее распространенными типами растительных сообществ являются солончаковые луга, менее распространены первичные песчаные степи, остальные из них (солонцеватые степи, вторичные песчаные степи, кустарники и болота) не занимают больших площадей. Вклад солончаковых лугов в сложение безлесных территорий не превышает 60 %, а большинство случаев составляет 30%. Наиболее распространенными сочетанием является комбинация песчаных степей и солончаковых лугов в соотношении от 30 до 70%. Следующим по распространенности, но значительно менее распространенным является сочетание болот и кустарников в соотношении от 30 до 70%. Солонцеватые степи не формируют крупных контуров и чаще всего встречаются в сочетании с песчаными степями и солончаковатыми лугами. Полученная схема гомогенных и гетерогенных выделов растительности насчитывает многие десятки статистически обоснованных сочетаний, которые могут объединяться в группы, подгруппы и надгруппы по генетическим деревьям родственных связей и показываться с разной степенью генерализации в зависимости от задач исследования.

Другим примером выделения гетерогенных ПТК может служить картирование лесных массивов Центрального Сибирского ботанического сада СО РАН [Глушкова и др.]. Территория Центрального сибирского ботанического сада (ЦСБС) СО РАН расположена в пределах Приобского плато. Это плоский водораздел правобережья Оби, расчлененный ее притоками и овражно-балочными системами.
Водораздельные массивы сложены субаэральным комплексом отложений (лессовидные суглинки и супеси с прослойками пылеватых песков и палеопочвами). Днища ложбин стока выполнены аллювиальными песками и супесно-суглинистыми илами, а их борта сложены супесчаным делювием.

В работе использовались космические снимки QuickBird летнего и осеннего сезонов съемки с пространственным разрешением 2,5 м. Снимки классифицировались в программном пакете ENVI методом максимального правдоподобия. Далее полученные результаты классификации конвертировались в векторный формат и в программном пакете ArcGIS производилось построение плотностных сеток.

Наличие данных дистанционного зондирования высокого разрешения позволило посредством классификации с обучением выделить на территории ЦСБС СО РАН лесные массивы и отчленить их от безлесных территорий. Поскольку пространственное разрешение спектральных каналов космоснимка QuickBird, разрешенных к использованию, составляет 2,5 м, то на изображении отчетливо выделяются залежи, пашни, лес, газоны, лесные посадки, дороги и тени. Адекватная оценка соотношения лиственных и хвойных пород возможна только в результате анализа и сопоставления двух снимков: позднеосеннего и летнего. Осенний снимок использовался для выделения хвойных деревьев, поскольку лиственные породы деревьев уже сбросили листву, а хвойные так и остались зелеными. В результате его анализа получаем векторный слой: распределение и сомкнутость хвойных пород в изучаемых лесах. На летнем снимке лиственные и хвойные породы располагаются близко в пространстве спектральных признаков и тяжело поддаются распознаванию методами автоматической классификации. Однако этот снимок отражает реальную картину распространения и сомкнутости лиственных пород в лесах Академгородка, в то время как характеристики их сомкнутости на позднеосенних снимках получаются сильно заниженными.

Анализ космических снимков и результатов классификации показал, что пиксели крон лиственного и хвойного леса с одной стороны не образуют сплошного контура, а с другой - равномерно распределены по территории. Поэтому, для оценки удельного вклада каждого типа объектов использовались плотностные
сеть. Схемы плотностного распределения позволяют выделять интервалы процентного содержания для каждого компонента отдельно и оконтуривать комплексные выделы с определенными типами соотношения компонентов [3]. Оценка процентного соотношения площадей, занятых кронами хвойных и лиственных пород деревьев, проведена в несколько этапов. Сначала были построены две плотностные сети (размер ячейки 2,5м, радиус 50м) по распределению: 1) крон хвойного (осенний снимок) и 2) крон всего леса (летнего снимка). В соответствии с традиционной классификацией (рис. 9) лес был разделен по плотности крон на следующие градации: густой лес (100-70%); лес нормальной плотности (70-40%); разреженный или парковый лес (40-20%) и отдельно стоящие деревья (20-0%). Разделив сеть плотности крон хвойных деревьев на сетку плотности всех крон, получили схему, которая отражает изменение содержания леса по соотношению хвойных и лиственных пород (1 — 100% хвойного леса; 0 — 0% хвойного леса). Значения полученной плотностной сети были разделены на четыре интервала: значения от 0 до 0,2 отнесены к лиственному лесу; от 0,2 до 0,5 - к хвойно-лиственному; от 0,5 до 0,8 - к лиственно-хвойному; от 0,8 до 1 - к хвойному. После этого векторную схему густоты леса наложили на векторную схему состава пород леса и посредством оверлейной операции получили интегральную схему распределения лесов как по густоте-разреженности, так и по соотношению хвойных и лиственных пород (рис. 3).

Большая часть лесов ботсада характеризуется средней сомкнутостью, что подтверждается полевыми исследованиями. При анализе породного состава лесов выяснилось, что разные сочетания пород занимают различные площади [Глушкова и др.]. Так, например, густые хвойные и лиственно-хвойные леса на изученной территории отсутствуют. Здесь же отметим, что густые хвойно-лиственные и лиственные леса в сумме не превосходят 0,9% площади территории. На территории ботсада преобладают лиственные леса средней сомкнутости (68,7%), на долю хвойно-лиственных лесов средней сомкнутости приходится 9,4% территории, разреженных лиственных — 9%.

Таким образом, исследования показали, что обработка мультиспектральных космических снимков высокого разрешения летнего и осеннего сезонов позволяет распознавать хвойные и лиственные породы деревьев и определять сомкнутость крон. Полученные результаты являются основой для дальнейшего мониторинга лесов ЦСБС на основе количественной динамики состава пород.

Разработанная технология картографирования гетерогенных ПТК позволяет анализировать ПТК со сложной пространственной организацией на различных иерархических уровнях методами ГИС и ДЗ. Она базируется на использовании баз геоданных, включающих унифицированные по междисциплинарному стандарту геолого-геоморфологические, почвенные и ботанические характеристики наземных экосистем. Комплексная технология включает обработку космоснимков разного пространственного разрешения методами управляющих классификаций, плотностной анализы территориальных неоднородностей, моделирование генерализации спектральных характеристик путем интерполяции с использованием сеточных моделей (с использованием программных пакетов ENVI и ArcGIS). Данная технология позволяет анализировать вклад ландшафтных обстановок в спектральный отклик космических снимков и моделировать возможные изменения ландшафтных обстановок при изменении одного или нескольких компонентов среды. В данной работе сведена из междисциплинарных исследований комплексная технология, интегрирующая методы ГИС и ДЗ для картографирования и мониторинга гетерогенных ПТК, соответствующих разным иерархическим уровням организации наземных экосистем.

ЛИТЕРАТУРА

1. Глушкова И.В., Зольников И.Д., Львина В.А., Макушина Н.И., Мальцева Т.В. Картирование лесных массивов Центрального Сибирского ботанического сада // Вестник НГУ, серия биологическая.
2. Зольников И.Д., Королюк А.Ю., Смоленцева Е.Н., Львина В.А., Добрецов Н.Н., Мартысевич У.В. Разработка и составление баз геоданных для картографирования и моделирования наземных экосистем средствами ГИС и ДЗ на примере Чуйской степи Горного Алтая // Сибирский экологический журнал. – 2010. № 2. – С. 209-220.
3. Зольников И.Д., Львина В.А., Королюк А.Ю. Комплексная технология картографирования и мониторинга гетерогенных ландшафтов // География и природные ресурсы. – 2010. № 2.
6. Львина В.А., Королюк А.Ю., Зольников И.Д., Смоленцев Б.А., Лашинский Н.Н. Отражение генерализации ландшафтных обстановок в спектральных характеристиках космических снимков мелкого среднего и крупного пространственного разрешения. // Исследование Земли из Космоса. – 2010. № 4. – С. 77–84.
APPLICATION OF THE CARTOGRAPHICAL METHOD IN MONITORING OPASNY ISLAND BIOCENOSIS IN THE SEA OF JAPAN

Loshkareva A.R., Voloshina I.V., Myslenkov A.I.
M.V.Lomonosov Moscow State University
Moscow
L.G.Kaplanov Federal State Institution Lazovsky Natural Reserve
Lazo
Russia
E-mail: lazovzap@mail.primorye.ru, aloskhareva@gmail.com

Abstract. The Island Opasny – is a unique natural object. The island contains the largest large seal rookery in the South-Eastern Primorye and the rookery has been monitored for 10 years. During March, 2011, newborn pups were observed on the island. There is also the most northern nested colony of Black-tailed Gull in Primorye, and colonies of Pacific Swift and the Japanese Cormorant. One pair of Eurasian eagle owls has been observed nesting on the island. The island is on the migration path of whales: Mink whale, False killer whale, Killer whale, and Humpback whale. Mapping of the island has become a prerequisite for the counts the survey of seals, gulls, swifts, and cormorants. This work is reported to attract attention to island, help reserve to receive the legal right on monitoring of the island and to give the island the status of the Monument of Nature.

Введение
Целью данной работы являлось создание ряда карт и планов, необходимых для проведения мониторинга биоценозов о. Опасный. На острове представлено самое крупное лежбище ларги Phoca largha в юго-восточном Приморье. Мониторинг лежбища проводится уже 10 лет. В марте 2011 года отмечено рождение белков. Здесь находится самая северная гравийная колония чернохвостых чаек Larus crassirostris, а также колонии белопоясных стрижей Apus pacificus и японских бакланов Phalacrocorax capillatus. Гнездится пара филинов Bubo bubo [Коломийцев, Поддубная, 1980; Шохрин, 2009]. Остров находится на пути миграций китообразных: малого полосатика, малой и большой касаток, кита-горбача. Картографирование острова стало необходимым условием для проведения учетов ларги, чаек, стрижей, бакланов.

Для проведения картографирования были использованы данные полевой тахеометрической съемки, космический снимок Landsat ETM+, данные GPS-съемки.

Характеристика района исследования
Лазовский государственный природный заповедник им. Л.Г. Капланова является вторым по площади заповедником в Приморском крае (рис.1). В настоящее время территория заповедника составляет 120998 га, охранныя зона заповедника – 15978 га (рис.2). Остров Опасный – уникальный природный объект, расположенный в Японском море в 1 км от бухты Кит и в 1,5 км от береговой границы Лазовского заповедника (рис.3). Остров вытянут в длину на 400 м и представляет собой скалистый массив с крутым абразивным берегом, обращенным к открытому морю. Западный берег острова не такой крутой и порос кустиком кустарником. В северо-западном направлении от острова отходит галечниково-гравийная коса, которая заканчивается небольшим кекуром. Именно на этой косе расположено лежбище ларги. Максимальная численность зарегистрирована в мае 2004 года: 187 голов [Волошина, 2007]. В геологическом строении острова преобладают гранитные и базальтовые породы. В пределах косы были отмечены две перемычки, находящиеся в динамичном состоянии.

Периодически они могут как перемыватьться, так и являться продолжением суши. Более отдаленная часть косы (место обитания и гнездовая чаек) покрыта незначительным слоем растительности. Вокруг косы, в воде, расположены скопления камней различной формы и величины. Плоские большие камни и галечниковый пляж и являются лежбищем тюленей ларги.

Область гнездования чернохвостой чаек в мире невелика. Этот вид населяет побережье Японского и Желтого морей, а также тихоокеанское побережье Японии. Известно немногим более 20 мест, где существуют колонии этой чаек, и лишь в четырех из них количество птиц превышает 10 тыс.
ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ ЗЕМЛИ: ТЕХНОЛОГИИ ИССЛЕДОВАНИЙ И ОБРАБОТКА ДАННЫХ

Рис. 1. Расположение Лазовского государственного заповедника

Рис. 2. Лазовский государственный заповедник им. Л.Г. Капланова
ДИСТАНЦИОНЕНОЕ ЗОНДИРОВАНИЕ ЗЕМЛИ: ТЕХНОЛОГИИ ИССЛЕДОВАНИЙ И ОБРАБОТКА ДАННЫХ

Чернохвостая чайка – типичный эврифаг. Основные группы корма в гнездовой период – рыба, мелкие беспозвоночные и отбросы. Для вида характерно использование разнообразных охотничих приемов и способов добывания пищи. Колонии чернохвостых чаек формируются в середине апреля, яйцекладка – в начале мая, массовое вылупление птенцов – в конце мая – начале июня. Поднятие птенцов на крыло – в середине июля. Заметных колебаний в сроках гнездований по годам не наблюдалось. Отход яиц выше на краю колонии, чем в центре. Разоряют кладки сороки, вороны, реже сами чайки.

Чернохвостая чайка Приморья принимает участие в циркуляции вирусов гриппа. Возможен занос этих вирусов с мест зимовок.

Чернохвостая чайка нуждается в охране как локально распространенный вид, ареал которого совпадает с наиболее освоенными районами стран Дальнего Востока [Литвиненко, 1980]. На острове Опасном находится самая северная гнездовая колония этого вида в Японском море, не описанная в монографии Н.М. Литвиненко.

Методика и результаты исследования биоценозов

Картографический метод исследования в мониторинге биоценозов применяется в Лазовском заповеднике с 1996 г. Научными сотрудниками заповедника собираются материалы по регистрации всех видов мlekопитающих, далее точки встреч заносятся в ГИС-систему заповедника, создаются карты пространственного распределения видов. Кроме того, для отдельных видов животных, доступных для наблюдения в течение длительных отрезков времени, проводятся работы по исследованию принципов внутрипопуляционной организации этого вида и выяснению роли пространственной и этологической структуры популяции. Одним из таких видов является тюлень ларга.
Рис. 4. Галечниково-гравийная коса о. Опасный
В задачи по исследованию морской экосистемы, а, в частности, тюленей ларга входит изучение:

- полового и возрастного состава лежбищных и кормовых группировок;
- пространственной структуры залегания тюленей на лежбище;
- ареал локальной популяции, его динамика на протяжении годового цикла;
- территориальности тюленей на лежбищах;
- дневной активности, влияния приливов и отливов на залегание и оставление лежбища.

Картографирование лежбиц тюленя ларга является необходимым элементом для проведения таких исследований.

При проведении данного исследования нами была выполнена задача по анализу структуры лежбищного пространства и использования его тюленями. Подобное исследование уже проводилось в 1987 году в Сихотэ-Алинском заповеднике. Тогда были созданы топографические планы в районе мысов Северный и Счастливый в масштабе 1:1 000. На созданные карты были нанесены зарисовки каждого лежащего тюлена. Было получено 240 схем залегания тюленей на лежбищах, собранных за 7 лет. Далее по полученным картам проводился анализ сезонных предпочтений залегания тюленей, зависимости лежек тюленей от высоты волны моря во время приливно-отливных явлений, выявление наиболее предпочтительных, «любимых» мест тюленей в пределах лежбиц [Волович, 1998]. Однако сами планы и производные от них карты были выполнены не картографами, поэтому их качество было признано недостаточным для проведения более точных исследований.

В августе 2011 г. тахеометрическую съемку юго-западного побережья острова Опасный (рис.4) выполняли специалисты-картографы.

Уникальность данного лежбища заключается в том, что оно является крупнейшим в юго-восточном Приморье и именно здесь рождаются на свет детеныши ларги.

На территории гривнико-галечниковой косы о. Опасный создан топографический план в масштабе 1:500. На плане отражены все элементы ситуации – береговая линия, скопления камней на суше и в воде, границы размываемых перемычек косы. Помимо этого, на плане указаны высоты местности. Все эти элементы помогают определить в дальнейшем возможность обитания на данной территории того, или иного вида животного. Также, на данный план острова впоследствии предполагается нанесение зафиксированных точек залегания ларг, гнездовья чеек, стрижей и бакланов.

На территории всего острова Опасный по космическому снимку Landsat ETM+ с использованием GPS-точек, полученных во время полевого обследования территории, была создана карта в масштабе 1:5 000. Данная карта-основа предназначена для нанесения на нее информации об обнаруженных видах, об их географической локализации, динамике пространственной изменчивости во времени.

Актуальность проведения подобных работ заключается в их востребованности. Поскольку остров Опасный так и не получил статуса памятника природы краевого значения и не является частью заповедной территории, то работы по изучению прибрежных экосистем научными сотрудниками здесь ранее не проводились. Результаты нынешних изысканий будут положены в основу изучения острова Опасный, как уникального местообитания млекопитающих и птиц.

Заключение

В рамках проведения данного исследования был составлен целый ряд карт, необходимый для исследования биоценозов острова Опасный. Были обследованы места гнездования черноклювой чайки и констатирована высокая смертность птенцов. Найдено и закартировано 112 трупов чеек. Из них 95% приходится на долю птенцов. Всего 10 особей были убиты хищными птицами. Сделаны выводы о предпочтении отдельных участков береговой полосы тюленем ларга. Оказалось, что когда галечниковая перемычка размывается, то ларги предпочитают лежать на камнях в море. Как только восстанавливается галечниковой-печаная перемычка, ларги используют ее для лежания. Именно здесь рождаются бельки, которые находятся рядом с матерями. В 2011 г. бельки были обнаружены 18 и 21 марта.

Данная работа призвана привлечь внимание к острову, помочь заповеднику получить юридическое право на мониторинг биоценозов острова и придание острову статуса Памятника природы.

ЛИТЕРАТУРА

ИСПОЛЬЗОВАНИЕ СПУТНИКОВЫХ СНИМКОВ СВОБОДНОГО ДОСТУПА ПРИ СОЗДАНИИ ГИС «ГЕОСИСТЕМЫ ПРИГОРОДНЫХ ЗОН НИЖНЕГО ПРИАМУРЬЯ И ИХ СОВРЕМЕННОЕ СОСТОЯНИЕ»

Остроухов А.В.
Институт водных и экологических проблем ДВО РАН
Хабаровск, Россия
E-mail: Ostran2004@bk.ru

USE OF SATELLITE IMAGERY FREE ACCESS TO THE ESTABLISHMENT OF GIS "GEOSYSTEM SUBURBAN AREA THE LOWER AMUR REGION AND THEIR CURRENT STATUS"

Ostroukhov A.V.
Institute water and environmental problems Far East branch of the Russian Academy of Sciences
Khabarovsk, Russia
E-mail: Ostran2004@bk.ru

Abstract. The work examines the possibility of using remote sensing data with different spatial resolution free access for generating and refining the cartographic database "Peri-urban geo-systems of the lower Amur region and their current status".

Социально-экономическое развитие городов Дальнего Востока, их промышленности и инфраструктуры сопровождается зачастую нарастающим остроты экологических проблем не только в пределах городской черты, но и прилегающих территорий пригородной зоны. Это связано как с выносом за город промышленных объектов, так и развитием малоэтажного жилищного строительства. Кроме того, пригородная зона крупных городов испытывает значительную рекреационную нагрузку, являясь традиционным местом организованного и стихийного отдыха горожан.

Не смотря на давноую освоенность пригородных территорий крупных городов Приамурья, таких как Хабаровск и Комсомольск на Амуре, знаний о функционировании геосистем и их развитии под влиянием антропогенного пресса крайне недостаточно. Нехватка информации связана с высокой динамичностью социально-экономических процессов, а так же с закрытостью или высокой стоимостью ведомственных данных. В этих условиях важным источником актуальной географической информации являются данные дистанционного зондирования земли (ДЗЗ), которые в зависимости от пространственного разрешения и спектральных характеристик могут использоваться для обновления картографической основы, создания карт современного землепользования, растительности, ландшафтов территории и т.д.

Имеющийся на сегодняшний день опыт использования ДЗЗ для формирования картографической базы данных «Геосистемы пригородных зон городов Нижнего Приамурья и их современное состояние» позволяет предложить следующие возможности применения различных снимков находящихся в свободном доступе:

1. Цифровая модель рельефа территории, созданная на основе данных AsterDEM (пространственное разрешение 15 м/пиксель) и используемая совместно с геологической картой, позволяет отразить геофизические особенности территории: основные высотные уровни, уклоны поверхности и т.д.

2. Данные со спутников Landsat 5-7, сенсоров TM, ETM + имеют пространственное разрешение основных каналов 30 метров/пиксель, что соответствует картографическому масштабу получаемых материалов 1:200 000. Достоинством этих снимков является доступность всех 7 мультиспектральных каналов снимка, что позволяет проводить автоматическую и полуавтоматическую классификацию изображений по ключевым участкам. Для территории пригородных зон г. Хабаровска и г. Комсомольска-на-Амуре использовались снимки Landsat ETM+ 2009 и 2008 гг. соответственно. Их обработка производилась в программной среде ENVI 4.7 с применением алгоритма классификации с максимальным соответствием ключевым участкам, выделенным в результате полевых работ и анализа лесоустроительных карт. Так же проводился расчёт индекса NDVI и показателя угнетённости растительности (Vegetation suppression). В результате была создана карта растительности, послужившая основой карты ландшафтов в масштабах 1:100 000 (пригородная зона г. Хабаровска, с применением дополнительных лесоустроительных материалов), 1:200 000 (пригородная зона г. Комсомольска-на-Амуре).

Для уточнения границ геосистем, выделения сельскохозяйственных земель, земель садово-огородных участков использовались данные спутника Terra (EOS AM-1) спектрорадиометра ASTER, имеющего

1 Работа выполнена при финансовой поддержке гранта РФФИ - Правительства Хабаровского края 10-05-98011
пространственное разрешение доступных снимков 15 м/пиксель (соответствует масштабу 1: 50 000, 1: 100 000). Обработка снимков и их интерпретация производилась в ArcGis 9.3 и MapInfo Professional 9.0.

4. Важным источником пространственной информации по современной инфраструктуре территории, размещению промышленных и селитебных объектов являются данные сверхвысокого разрешения (0,5м/пикс) спутника Quick Bird-2. Именно инфраструктурные и социально-экономические объекты выступают как наиболее динамичные факторы, влияющие на развитие природной среды территории пригородных зон, определяя антропогенную нагрузку, степень фрагментированности геосистем и, как следствие, их способность к самовосстановлению.

Таким образом, ДЗЗ в настоящее время могут служить эффективным источником актуальной географической информации, позволяя учитывать специфику и современное состояние геосистем пригородных зон при разработке планов их социально-экономического развития.